Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\overline{ba}.10=\overline{ab}.45$
$(10b+a).10=(10a+b).45$
$100b+10a = 450a+45b$
$55b = 440a$
$5b=40a$
$\Rightarrow 40a=5b< 5.10<80$
$\Rightarrow a< 2$
Mà $a$ là số tự nhiên khác 0 nên $a=1$.
$5b=40.a=40\Rightarrow b=8$.
Vậy số cần tìm là $18$
Ta có: \(A=\overline{ab}+\overline{ba}\)\(=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
Mà \(1\le a\le9,1\le b\le9\)
Để A là số chính phương => a+b=11
\(\Rightarrow\left(a,b\right)\in\left\{\left(2;9\right),\left(3;8\right),\left(4;7\right),\left(5;6\right),\left(6;5\right),\left(7;4\right),\left(8;3\right),\left(9;2\right)\right\}\)
Vậy ta có các số: 29,92,38,83,47,74,56,65
ab-ba = 10a + b - (10b + a) = 9a - 9b = 9(a-b) = 32 (a-b)
Để ab-ba là là số chính phương thì a - b là số chính phương mà a; b là các chữ số nên a - b chỉ có thể là: 1;4;9
+) a - b = 1 ; ab nguyên tố => ab = 43 thỏa mãn
+) a - b =4 => ab = 73 thỏa mãn
+) a - b = 9 => ab = 90 loại
Vậy ab = 43 hoặc 73
k mình nha
Chúc bạn học giỏi
Mình cảm ơn bạn nhiều
Câu 3 :
b. P là nguyên tố khi và chỉ khi n + 4 chia hết cho 2n - 1
=> 2n + 8 chia hết cho 2n - 1
mà 2n - 1 chia hết cho 2n - 1 . Suy ra 9 chia hết cho 2n - 1
=> 2n - 1 \(\inƯ\)(9) = { 1 , 3 , 9 }
=> 2n - 1 \(\in\) { 1 ,3 , 9 }
=> 2n\(\in\){ 2 , 4 ,10}
=> n\(\in\){ 1, 2 ,5 }
=> P\(\in\){ 5 , 2 , 1 }
Vì P là nguyên tố nên P\(\in\){ 5,2}
vậy n\(\in\){ 1 , 2 }
Câu 4 :
Vì \(ab3=\dfrac{3}{4}.3ab\)
⇒\(ab3=3ab.\dfrac{3}{4}\)
\(\Rightarrow10ab+3=\left(300+ab\right).\dfrac{3}{4}\)
\(\Rightarrow10ab+3=225+\dfrac{3}{4}.ab\)
\(\Rightarrow10ab-\dfrac{3}{4}.ab=225-3\)
\(\Rightarrow\dfrac{37}{4}.ab=222\)
\(\Rightarrow ab=222:\dfrac{37}{4}=24\)
Vậy số tự nhiên có hai chữ số cần tìm là 24
=> ab = 1 nửa của 90 vì : ab + ab = 90
=> ab = 90 : 2 = 45
=> ab = 45
mk chiu nhung k mk nha