Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số chính phương là các số có lũy thừa hay còn gọi là bình phương, số mũ 2.
1 số cộng cho số kia ra số chính phương à ?
- Có lẽ là với điều kiện của số chính phương đó là chia hết cho 11.
Cho nên số chính phương khi ra dc kết quả là số 112 = 121
Các cặp số cộng ra 121 là :
- 74 và 47
- 83 và 38... ( các số có 2 chữ số cộng ra 11 thì ra 121. VD : 83 = 8 + 3 = 11, cộng với số ngược ra 121 )
Còn nhiều số lắm nhưng có lẽ bạn có thể tự tìm thêm.
duong nhien la 11 va 65 roi ban oi neu ko tic minh la ban hoc giot
gọi số đó là ab
ab +ba = 11a + 11b chia het cho 11
=> ab +ba chia het cho11
nhớ tick cho mình nha
3.
Gọi số cần tìm là : abcde
abcdex4=edcba.
Ta có a phải là số chẵn.
Và a<hoặc=2.
Vì nếu a>2 thì 4a>10.
Dẫn đến số có 6 chữ số.
Vậy a=2.suy ra e=8(vì e>hoặc=4a).
Xét b.
ta có 4a=e nen 4b<10.hay b<hoặc=2.ma (4d)+3=b
Nên b là số lẻ.nên b=1.
Từ đó suy ra d=2 hoặc d=7.
Nếu d=2 thì 4d+3=11 thì (4c)+1=(điều này k xảy ra)
Nên d=7.suy ra 4d+3=31.nên (4c)+3=(điều này xảy ra khi c lẻ và c chỉ có thể =9.
Vậy số cần tìm là: 21978
Gọi số tự nhiên có 2 chữ số là ab theo bài ra ta có :
ab + ba = \(A^2\)
\(10a+b+10b+a=A^2\)
\(11a+11b=A^2\)
\(11.\left(a+b\right)=A^2\)
Vì \(11\) là số nguyên tố nên \(a+b=11\)
Vậy số cần tìm là : 29 ; 92 ; 83 ; 38 ; 74 ; 47 ; 56 ; 65
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
gọi số cần tìm là ab (a, b = 1,2,..., 9)
giả thiết ta có: (ab)² - (ba)² = n² (ab và ba có gạch đầu)
<=> (10a+b)² - (10b+a)² = n² <=> [(10a+b) - (10b+a)][(10a+b) + (10b+a)] = n²
<=> (9a-9b)(11a+11b) = n² <=> 3².11.(a-b)(a+b) = n² (*)
do 11 là số nguyên tố nên (*) chỉ xãy ra khi a-b hoặc a+b có ước là 11
0 < a, b < 9 nên a+b < 22 và a-b < 9 vậy chỉ có 1 khã năng là a+b = 11
và ta còn phải có a-b là số chính phương (có thể mò vài cặp là đc) hoặc biện luận:
thấy a > b ; a+b = 11 => a = 11-b > 11/2 , chỉ cần kiểm tra cho b từ 1 đến 5
b = 1, a = 10 thỏa ; b = 5, a = 6 thỏa
vậy có 2 số thỏa mãn yêu cầu là: 11 và 65
(cái số 11 hơi kì nhưng vẫn thỏa mãn: 11² - 11² = 0² )
có 8 số:29;38;47;56;65;74;83;92