Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (n+3) Chia hết cho (n-1)
Ta có : (n+3)=(n-1)+4
Vì (n-1) chia hết cho (n-1)
Nên (n+3) chia hết cho (n-1) thì 4 chia hết cho (n-1)
=> n-1 thuộc Ư(4)={1;2;4}
n-1 1 2 4
n 2 3 5
Vậy n thuộc {2;3;5 } thì (n+3) chia hết cho (n-1)
b)(4n+3) chia hết cho (2n+1)
Ta có : (4n+3)=2n.2+1+2
Vì (2n+1) chia hết cho (2n+1)
Nên (4n+3) chia hết cho (2n+1) thì 3 chia hết cho (2n+1)
=> 2n+1 thuộc Ư(3)={1;3}
2n+1 1 3
2n 0 2
n 0 1
Vậy n thuộc {0;1} thì (4n+3) chia hết cho (2n+1)
2xy - x + 2y = 13
\(\Leftrightarrow\) 2y(x + 1) - x - 1 = 12
\(\Leftrightarrow\) (2y - 1)(x + 1) = 12
Vì y là số tự nhiên 2y - 1 là ước lẻ của 12. Lại có x + 1 là số tự nhiên nên 2y - 1 là số tự nhiên \(\Rightarrow2y-1\in\left\{1;3\right\}\). Ta có bảng sau:
2y - 1 | 1 | 3 |
x + 1 | 12 | 4 |
y | 1 | 2 |
x | 11 | 3 |
\(2xy-x+2y=13\)
\(x\left(2y-1\right)+2y-1=12\)
\(x.\left(2y-1\right)+\left(2y-1\right)=12\)
\(\left(2y-1\right).\left(x+1\right)=12\)
\(\Rightarrow2y-1,x+1\inƯ\left(12\right)=\left\{\pm1,\pm2,\pm3,\pm4,\pm6,\pm12,\right\}\)ư
mà 2y-1 là số lẻ =>\(2y-1\in\left\{\pm1,\pm3\right\}\)
=> \(x+1\in\left\{\pm12,\pm4\right\}\)
đến đây tự tính nha =)
S=1 +2+..+n
S=n+(n-1)+..+2+1
=> 2S = n(n+1)
=> S=n(n+1)/2
=> aaa =n(n+1)/2
=> 2aaa =n(n+1)
Mặt khác aaa =a*111= a*3*37
=> n(n+1) =6a*37
Vế trái là tích 2 số tự nhiên liên tiếp
=> a*6 =36
=> a=6
(nêu a*6 =38 loại)
Vậy n=36, aaa=666 Và a=6
\(\left(481000+abc\right):abc=1481\)
\(\Rightarrow481000:abc+1=1481\)
\(\Rightarrow481000:abc=4180\)
\(\Rightarrow abc=481000:4180\)
\(\Rightarrow abc=325\)
(481000+abc): abc= 1481
481000: abc +1=1481
481000: abc =1481-1=1480
abc= 481000:1480=325
a : 5 dư 3
= > a - 3 chia hết cho 5
= > 2 (a - 3) chia hết cho 5
= > 2a - 6 + 5 chia hết cho 5
= > 2a - 1 chia hết cho 5, a chia 7 dư 4
= > a - 4 chia hết cho 7
= > 2(a - 4 ) chia hết cho 7
= > 2a - 8 + 7 chia hết cho 7
= > 2a -1 chia hết cho 7
a chia 11 dư 6
= > a - 6 chia hết cho 11
= > 2(a - 6) chia hết cho 11
= > 2a - 12 + 11 chia hết cho 11
= > 2a -1 chia hết cho 11
Vậy 2a - 1 thuộc BC(5;7;11)
Vì a nhỏ nhất nên 2a -1 nhỏ nhất
= > 2a - 1 = BC(5;7;11) = 5.7.11= 385
= > 2a - 1 =385
= > 2a = 386; a = 193
(mình nghĩ vậy)
a : 5 (dư 3) =>2a : 5 (dư 1) =>2a - 1 chia hết cho 5.
a : 7 (dư 4) =>2a : 7 (dư 1) =>2a - 1 chia hết cho 7.
a : 11 (dư 6) =>2a : 11 (dư 1) =>2a - 1 chia hết cho 11.
a nhỏ nhất => 2a nhỏ nhất => 2a - 1 nhó nhất.
=>2a - 1 thuộc BCNN(5,7,11) (1)
5 = 5
7 = 7
11 = 11
BCNN(5,7,11)= 5 . 7 . 11 = 385. (2)
Từ (1) và (2) => 2a - 1 = 385
2a = 385 + 1
2a = 386
a = 386 : 2
a = 193
Vậy,số tự nhiên a nhỏ nhất cần tìm là 193
Gọi ƯCLN (2n+1;6n+5) = d ( d thuộc N sao )
=> 2n+1 và 6n+5 đều chia hết cho d
=> 3.(2n+1) và 6n+5 đều chia hết cho d
=> 6n+3 và 6n+5 đều chia hết cho d
=> 6n+5-(6n+3) chia hết cho d
=> 2 chia hết cho d
Mà 2n+1 lẻ nên d lẻ
=> d=1
=> ƯCLN (2n+1;6n+5) = 1
=> ĐPCM
k mk nha
Gọi UCLN(2n+1;6n+5)=d
Ta có: 2n+1 chia hết cho d\(\Rightarrow3\left(2n+1\right)\) chia hết cho d\(\Rightarrow6n+3\) chia hết cho d
6n+5 chia hết cho d
\(\Rightarrow\left(6n+5\right)-\left(6n+3\right)\) chia hết cho d
\(\Rightarrow2\) chia hết cho d
\(\Rightarrow d\in\left\{1,2\right\}\).Vì 2n+1 lẻ nên không chia hêt cho 2
\(\Rightarrowđpcm\)
\(10-2n⋮n-2\)
\(-2\left(n-2\right)+6⋮n-2\)
\(6⋮n-2\)
\(n-2\in\left\{6,2,1,3,-6,-2,-1,-3\right\}\)
\(n\in\left\{8,4,3,5,-4,0,1,-1\right\}\)