Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu chia hết cho 9 thì chia hết cho 31 dư 28-5=23
Hiệu của 31 va 29:31-29=2
Thương của phép chia cho 31 là:
(29-23):2=3
Số cần tìm là:
31*3+28=121
DS :121
b)1/a + 1/b + 1/c=1 / (a + b + c)
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau)
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0.
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)
vì đẳng thức đúng với mọi x, thay x=2, ta có:
(x+a)(x-2)-7=-7=(2+b)(2+c)=-1.7=1.-7
vì a,b,c lá số tự nhiên nên (2+b)(2+c)>0>-7
suy ra ko có a,b,c tự nhiên thỏa mãn
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Để A ⋮ B thì:
3n ≤ 9 và 2n ≥ 4
n ≤ 3 và n ≥ 2
n = 2 hoặc n = 3
Vì abc<1000
=>a<7
=>abc<700
=> 1<=a,b,c<=5
Ta đi chứng minh trong 3 số a,b,c tồn tại một số bằng 5
Thật vậy: Giả sử cả 3 số a,b,c<=4
=>abc<=72<100 vô lí
Do đó a=5 hoặc b=5 hoặc c=5
*Nếu a=5
Ta có
500+bc=5!+b!+c!<=240+b!
=>b!+240>500
=>b!>260
=>b>5 vô lí
Nên a<=4
*Nếu b=5
Lập luận tương tự b<=4
*Nếu c=5
Tìm được a=1;b=4
Vậy…
abc=100a+ 10b +c =a! +b! +c!.
0! = 1, 2! = 2, 3!= 6, 4! = 24, 5!= 120, 6!= 720, 7! = 5040 (4 chữ số) => a; b; c <7, a khác 0
- xét trường hợp a= 6, thì 600+ 10b+ c= 720+b! + c! <=> 10b+ c =120 +b! +c! (vô lý vì b, c <7)
- nếu a= 5 thì 500+ 10b +c = 120 +b!+ c! [vô lý vì vt >500, vp <360 (a=5, b=5, c=5)] ( vt= vế trái, vp= vế phải)
- nếu a= 4 thì 400+ 10b +c = 24 +b!+ c! [vô lý vì vt >400, vp < 264 (a=4, b=5, c=5)]
- nếu a= 3 thì 300+ 10b +c = 6 +b!+ c! [vô lý vì vt >300, vp <246 (a=3, b=5, c=5) ]
các trường hợp a=5,4,3 thì b và c không thể là số 6, giá trị lớn nhất của b và c là 5
- nếu a= 2 thì 200+ 10b +c = 2+b!+ c! <=> 128+ 10b+ c= b! + c! => b hoậc c là 5
+ b= 5 thì 128+ 50 +c= 120+ c! (không tồn tại c )
+c=5 thì 128+10b+ 5= b! +120 (không tồn tại b )
=> a=1 và ta có 100+ 10b+ c= 1 +b! +c! => b hoặc c là 5
+ b=5 thì 100+ 50+ c= 1 +120 +c! ( không tồn tại c)
+c= 5 thì 100+ 10b+ 5= 1 +b! +120 <=> 10b= 16+ b! <=> b=4
vậy abc= 145.
bài giải hơi dài, nhưng suy nghĩ ra nghiệm dễ vì a, b, c chạy từ 0 đến 6
Ta có: a = 4b + 1
=> a + 7 = 4b + 1 + 7= 4b + 8 \(⋮\)b
=> 8 \(⋮b\) và b là số tự nhiên
=> b\(\inƯ\left(8\right)=\left\{1;2;4;8\right\}\)
+ b = 1=> a = 5 => a + 2b = 5 +2 .1 = 7 là số nguyên tố ( thỏa mãn )
+) b = 2 => a = 9 => a + 2b = 9 + 2 . 2 = 13 là số nguyên tố ( thỏa mãn )
+) b = 4 => a = 17 => a + 2b = 17 + 2.4 = 25 không là số nguyên tố ( loại )
+) b = 8 => a = 33 => a + 2b = 49 không là số nguyen tố ( loại )
Vậy có các cặp (a; b ) là ( 5; 1) và ( 9; 2).
a,thay P(1),P(2),P(3),P(4) vào P(x(=) rồi giải hệ pt
câu b thì thay x=567 vào P(x) tính đc ở trên nhờ có các hệ số a,b,c,d
Đag cần gấp giải giúp với