Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi c, d là thương của a, b khi chia cho 13. Ta có:
13c+13d=117 <=> 13(c+d)=117 => c+d=9. Có các TH:
+/ \(\hept{\begin{cases}c=1\\d=8\end{cases}}=>\hept{\begin{cases}a=13.1=13\\b=13.8=104\end{cases}}\)
+/ \(\hept{\begin{cases}c=2\\d=7\end{cases}}=>\hept{\begin{cases}a=13.2=26\\b=13.7=91\end{cases}}\)
+/ \(\hept{\begin{cases}c=3\\d=6\end{cases}}=>\hept{\begin{cases}a=13.3=39\\b=13.6=78\end{cases}}\)loại do 78 chia hết cho 39
+/ \(\hept{\begin{cases}c=4\\d=5\end{cases}}=>\hept{\begin{cases}a=13.4=52\\b=13.5=65\end{cases}}\)
ĐS: {a, b}={13,104}; {26,91}; {52;65}
Bài 2 làm tương tự
\(ab=\left(a,b\right).\left[a,b\right]=12.144=1728\Rightarrow a=\frac{1728}{b}\).
\(a=b+12\Rightarrow\frac{1728}{b}=b+12\Rightarrow b=36\)(vì \(b\inℕ\))
\(b=36\Rightarrow a=48\).
Đây là toán nâng cao chuyên đề ước chung và bội chung, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau:
Giải:
Vì ƯCLN(a; b) 16 nên \(\left\{{}\begin{matrix}a=16k\\b=16d\end{matrix}\right.\)(k;d) =1; k;d \(\in\) N*
Theo bài ra ta có: 16k + 16d = 96
16.(k + d) = 96
k + d = 96 : 16
k + d = 6
Lập bảng ta có:
k | 1 | 2 | 3 | 4 | 5 |
a = 16k | 16 | 80 | |||
d | 5 | 4 | 3 | 2 | 1 |
b = 16d | 80 | 16 | |||
(k; d) = 1 | TM | loại | loại | loại | TM |
Theo bảng trên ta có: (a; b) = (16; 80); (80; 16)
Kết luận vậy các cặp số a; b thỏa mãn đề bài là:
(a;b) = (16; 80); (80; 16)
=> a ,b la boi chung cua 4
liet ke ra boi cua 4 B(4) = (0,4,8,16,24,48,36,...)
a+b=48 => a = 24 hoac 36
b=36 hoac 24
hk tot
a + b = 144 và ƯCLN = 18
a = 18m b = 18n (m + n) = 1 khác 1
a + b = 18(m + n) = 144
m + n = 144 : 18 = 8
=> m = 5 ; 3 ; 1 ; 7
a ; b = 18 x 5 = 90 = 18 x 3 = 54 = 18 x 1 = 18 = 18 x 7 = 126
hi nha