K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử 17a+8=x2⇒17a−17+25=x2⇒17(a−1)=x2−25⇒17(a−1)=(x−5)(x+5)17a+8=x2⇒17a−17+25=x2⇒17(a−1)=x2−25⇒17(a−1)=(x−5)(x+5)

⇒(x−5);(x+5)⋮17⇒(x−5);(x+5)⋮17

⇒x=17n±5⇒a=17n2±10n+1

28 tháng 11 2015

a - 6 ; a + 6 là số chính phương nên đặt a - 6 = m2; a + 6 = n2

=> n2 - m= 12

=> (n - m).(n + m) = 12

Nhận xét:  (n - m) + (n + m) = 2n là số chẵn nên n - m và n + m cùng tính chẵn lẻ. hơn nữa, m < n

=> n - m = 2; n + m = 6

=> 2n = 2 + 6 = 8 => n = 4

m = 4 - 2 = 2

Vậy a - 6 = 22 = 4 => a = 10

2 tháng 7 2016

401007\7

4 tháng 4 2015

1.Mính ko bik

2.ko biik

3.20

 

12 tháng 12 2016

cau 3 =2

100%

8 tháng 1 2021

Vì \(n\)là số tự nhiên có 2 chữ số

\(\Rightarrow\)\(10\le n\le99\)\(\Rightarrow\)\(21\le2n+1\le199\)

Vì \(2n+1\)là số chính phương lẻ

\(\Rightarrow\)\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow\)\(2n\in\left\{24;48;80;120;168\right\}\)

\(\Rightarrow\)\(n\in\left\{12;24;40;60;84\right\}\)

Thay lần lượt các giá trị của \(n\)vào \(3n+1,\)ta có:

+ Với \(n=12\)\(\Rightarrow\)\(3n+1=3\times12+1=37\left(L\right)\)

+ Với \(n=24\)\(\Rightarrow\)\(3n+1=3\times24+1=73\left(L\right)\)

+ Với \(n=40\)\(\Rightarrow\)\(3n+1=3\times40+1=121\left(TM\right)\)

+ Với \(n=60\)\(\Rightarrow\)\(3n+1=3\times60+1=181\left(L\right)\)

+ Với \(n=84\)\(\Rightarrow\)\(3n+1=3\times84+1=253\left(L\right)\)

Vậy \(n=40\)

Chúc bn hok tốt ^_^

12 tháng 2 2016

Đặt: a+15=\(m^2\); a-1=\(n^2\)(m khác n). Nên a+15-(a-1)=\(m^2\)-\(n^2\)=\(m^2\)+mn-mn-\(n^2\)=m(m+n)-n(m+n)=(m-n)(m+n)

                                       Suy ra: 16=(m+n)(m-n) Mà:16=1.16=2.8=(-1)(-16)=(-2)(-8)  ((m+n)(m-n) không thể bằng 4.4 vì m khác n)

Từ đó ta có bảng sau:

m+n

ví dụ:8

m-n2
a10(nhận)

người đọc tự giải tiếp.

Từ đó ta có đáp số.........
 

 

12 tháng 2 2016

a=1

Ủng hộ nha

12 tháng 2 2016

1 , ủng hộ mk nha

6 tháng 4 2015

Vì n là số có 2 chữ số nên =>9<n<100 =>19<n<201

Mà n là số chính phương lẻ nên => n= 25 ; 49 ; 81; 121; 169

vì chỉ có trường hợp 3n+1=121 (là số chính phương ) thỏa mãn bài ra nên : => n=40

mấy trường hợp n=25;49;81;121;169 bạn tự thử nhé

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

13 tháng 5 2015

p=2 thì p^4+2 là hợp số

p=3 =>p^4+2=83 là số nguyên tố

với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số

vậy p=3

14 tháng 5 2015

giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương

Đặt  2n + 2003 = k2        (1)      và  3n + 2005 = m2              (2)   (k, m \(\in\) N)

trừ theo từng vế của (1), (2) ta có: 

 n + 2 = m2 - k2

khử n từ (1) và (2)  =>  3k2  - 2m2 = 1999            (3)

từ (1)   =>  k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1)  - 2m2 = 1999 

<=> 2m= 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2             (4)

vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) =>  m2 chia 4 dư 2, vô lý

vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán