K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)A=x+3/x-2

A=x-2+5/x-2

A=1+5/x-2

vì 1 thuộc Z nên để A thuộc Z thì 5 phải chia hết cho x-2

x-2 thuộc ước của 5

x-2 thuộc -5;-1;1;5

x = -3;1;3 hoặc 7

giá trị các biểu thức theo giá trị của x như trên và lần lượt là 0;-4;6;2

b)để B= 1-2x/2+x thuộc Z thì

1-2x phải chia hết cho 2+x

nên 1-2x-4+4  phải chia hết cho x+2

1-(2x+4)+4  phải chia hết cho x+2

1+4-[2(x+2]  phải chia hết cho x+2

5 -[2(x+2] phải chia hết cho x+2

vì [2(x+2] chia hết cho x+2 nên 5 phải chia hết cho x+2

suy ra x+2 thuộc ước của 5 

  x+2 thuộc -5;-1;1;5

x=-7;-3;-1;3

giá trị các biểu thức theo giá trị của x như trên và lần lượt là -3;-7;3;-1

19 tháng 4 2017

bạn làm sai 1 chút ở đầu

11 tháng 3 2016

2x3-1=15=>x3=(15+1):2=16:2=8

=>x=2

Thay x=2 vào ta được :

(y-15)/16=(z+9)/25=18/9=2

(*) (y-15)/16=2=>y-15=2.16=32=>y=47

(*) (z+9)/25=2=>z+9=50=>z=41

 Vậy (x;y;z)=(2;47;41)

10 tháng 3 2016

Cậu hỏi toán lớp mấy vậy?

3 tháng 4 2016

b,(*)chứng minh a=-3b:

xét a-b=2(a+b)

=>a-b=2a+2b

=>-b-2b=2a-a

=>-3b=a (đpcm) 

(*) tính a/b :

Từ -3b=a=>a/b=-3

(*)tính a và b:

Ta có : a-b=a/b=-3

             và 2(a+b)=a/b=-3

hệ pt<=>a-b=-3                   

        và 2(a+b)=-3    

       <=>a-b=-3    (1)

        và a+b=-1,5   (2)

Lấy (1)+(2),vế theo vế ta đc:

(a-b)+(a+b)=-3+(-1,5)

=>a-b+a+b=-4,5

=>2a=-4,5=>a=-2,25

Mà a-b=-3=>b=0,75

Vậy (a;b)=(-2,25;0,75)

 

 

 

3 tháng 4 2016

c) vì (x-y2+z)2 >= 0 với mọi x;y;z

      (y-2)2 >= 0 với mọi y

     (z+3)2 >= 0 với mọi z

=>(x-y2+z)2+(y-2)2+(z+3)2 >= 0 với mọi x;y;z

Mà theo đề: (x-y2+z)2+(y-2)2+(z+3)2=0

=>(x-y2+z)2=(y-2)2=(z+3)2=0

+)(y-2)2=0=>y=2

+)(z+3)2=0=>z=-3

Thay y=2;z=-3 vào (x-y2+z)2=0=>x-22+(-3)2=0=>x=-5

Vậy (x;y;z)=(-5;2;-3)

26 tháng 4 2016

ta có 3n+2 chia hết cho 2n+1

Nên   2(3n+2) chia hết cho 2n+1

            6n+4 chia hết cho 2n+1

           6n+3+1 chia hết cho 2n+1

           (6n+3)+1 chia hết cho 2n+1

            3*(2n+1)+1 chia hết cho 2n+1

Mà 3*(2n+1) chia hết cho 2n+1 nên 1 phải chia hết cho 2n+1

Nên 2n+1E Ư(1)

       2n+1E{1;-1}

Nếu 2n+1=1 

        2n=1-1

      2n=0

      n=0

Nếu 2n+1=-1

       2n=-1-1

       2n=-2

         n=-1

KL: vậy n=-1 hoặc n=0

17 tháng 1 2018

3n+2\(⋮\)2n+1

\(\Rightarrow\)2(3n+2)\(⋮\)2n+1

6n+4\(⋮\)2n+1

3(2n+1)+1\(⋮\)2n+1

Vì 3(2n+1)\(⋮\)2n+1 nên 1\(⋮\)2n+1

\(\Rightarrow\)2n+1\(\in\)Ư(1)

2n+1 1 -1
n 0 -1

Vậy n\(\in\){0;-1}

19 tháng 12 2017

31 tháng 7 2018

8 tháng 4 2016

3(x-2)-4(2x+1)-5(2x+3)=50

<=>(3x-6)-(8x+4)-(10x+15)=50

<=>3x-6-8x-4-10x-15=50

<=>(3x-8x-10x)+(-6-4-15)=50

<=>-15x-25=50

<=>-15x=75

<=>x=-5

8 tháng 4 2016

\(3\frac{1}{2}:\left(4-\frac{1}{3}\left|2x+1\right|\right)=\frac{21}{22}\)

<=>\(4-\frac{1}{3}\left|2x+1\right|=\frac{7}{2}:\frac{21}{22}=\frac{11}{3}\)

<=>\(\frac{1}{3}\left|2x+1\right|=4-\frac{11}{3}=\frac{1}{3}\)

<=>\(\left|2x+1\right|=1\)

<=>2x+1=1 hoặc 2x+1=-1

<=>2x=0 hoặc 2x=-2

<=>x=0 hoặc x=-2

Vậy......................

15 tháng 5 2017

Theo hệ quả của bất đẳng thức Cauchy - Schwarz

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

\(x^2+y^2+z^2\le3\)

\(\Rightarrow xy+yz+xz\le3\)

Ta có \(P=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\)

Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức

\(\Rightarrow P\ge\dfrac{\left(1+1+1\right)^2}{xy+1+yz+1+xz+1}=\dfrac{9}{xy+yz+xz+3}\) (1)

Ta có \(xy+yz+xz\le3\)

\(\Rightarrow xy+yz+xz+3\le6\)

\(\Rightarrow\dfrac{9}{xy+yz+xz+3}\ge\dfrac{9}{6}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow P\ge\dfrac{3}{2}\)

Vậy \(P_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(x=y=z=1\)

8 tháng 4 2016

đăng hoài

7 tháng 5 2016

a) 3(x - 2) - 4(2x + 1) - 5(2x + 3) = 50

3x - 6 - 8x - 4 - 10x - 15 = 50

(3x - 8x - 10x) - (6 + 4 + 15) = 50

-15x + 25 = 50

-15x = 50 - 25

-15x = 25

x = 25 : (-15)

x = -5/3

Chúc bạn học tốtok

 

8 tháng 1 2016

khó voho

8 tháng 1 2016

Hỏi đáp Toánbit lm bài này k giup tui