Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do a chia hết cho các số 5 và 9
\(\Rightarrow\)a \(\in\) BC(5;9) mà BCNN(5;9) = 45
\(\Rightarrow\)a \(\in\) {0;45;90;...)
Mà a có 10 ước \(\Rightarrow\)a = 90
Vậy số tự nhiên cần tìm là 90
Theo bài ra : n có 48 ước
Mà ax.by = n
=> (x+1)(y+1) = 48
x(y+1)+y+1=48
xy+x+y+1=48
xy+12+1=48
xy+13=48
xy=48-13
xy=35
Mà 35=1.25=5.7
Vì x>y
+ Nếu x=35 , y=1 thì n= 235.3
+ Nếu x=7 , y=5 thì n=27.35=31104
Trong 2 số trên thì số 31104 nhỏ hơn => n=31104
Tick nha
bài của Hatsune Miku viết nhầm chỗ 35 = 1.35 chứ không phải 1.25
x-2 chia hết cho 12
x-2+12 chia hết cho 12
x-8 chia hết cho 18
x-8+18 chia hết 18
x+10 chia hết cho 12 và 18
x+10 E BC[12;18]
12=2^2x3
18=2x3^2
BCNN[12;18]=2^2x3^2=4x9=36
BC[12;18]=B[36]=[0;36;72;108;....]
xE[26;62;98;.....]
mà 50<x<80
vậy x=62
bạn thử lại nha
Vì a là số nguyên tố > 3 nên a có dạng a = 3k + 1 hoặc a = 3k + 2 \(\left(k\inℕ\right)\)
-Nếu a = 3k + 1 thì \(\left(a-1\right)\cdot\left(a+4\right)=\left(3k+1-1\right)\left(3k+1+4\right)=3k\left(3k+5\right)\)
TH1: k là số chẵn thì \(k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
TH2: k là số lẻ thì \(3k+5⋮2\Rightarrow k\left(3k+5\right)⋮2\Rightarrow3k\left(3k+5\right)⋮6\Rightarrow\left(a-1\right)\left(a+4\right)⋮6\)
-Nếu a = 3k + 2 thì \(\left(a-1\right)\left(a+4\right)=\left(3k+2-1\right)\left(3k+2+4\right)=\left(3k+1\right)\left(3k+6\right)\)
Chứng minh tương tự như trên ta cũng được \(\left(a-1\right)\left(a+4\right)⋮6\)
a, (x+3)*(y+2)=1
=> x+3 và y+2 là ước của 1
Ta có bảng sau:
x+3 | -1 | 1 |
x | -4 | 2 |
y+2 | -1 | 1 |
y | -3 | 1 |
Vậy...
Ta có : (2x - 1)3 = 8
=> (2x - 1)3 = 23
=> 2x - 1 = 2
=> 2x = 3
=> x = 3/2
Vậy x = 3/2
Bài 1 :
Ta có :
\(\left|2x-1\right|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{6}{2}\\x=\frac{-4}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy \(x=-2\) hoặc \(x=3\)
Bài 2 :
Đặt \(A=\frac{3x+4}{x-1}\) ta có :
\(A=\frac{3x+4}{x-1}=\frac{3x-3+7}{x-1}=\frac{3x-3}{x-1}+\frac{7}{x-1}=\frac{3\left(x-1\right)}{x-1}+\frac{7}{x-1}=3+\frac{7}{x-1}\)
Để A là số nguyên thì \(\frac{7}{x-1}\) phải nguyên \(\Rightarrow\)\(7⋮\left(x-1\right)\)\(\Rightarrow\)\(\left(x-1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(x-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
2x−92402x−9240=39803980⇒⇒2x−92x−9=240.3980240.3980=117117
2x−9=1172x−9=117⇒⇒2x=117+9=1262x=117+9=126⇒⇒x=126:2=63
Ta có 2x–9/240=39/80=117/240. suy ra 2x – 9 = 117
Từ đó tìm được x = 63