K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2017

Nếu x=0 => y^3=2 => ko tồn tại y , x

Nếu x khác 0 mà x thuộc Z nên x^2 > = 1 => x^2-1 >=0

Dễ thấy: y^3 > x^3

Lại có : y^3 = (x+1)^3-(x^2-1) < = (x+1)^3

=> x^3 < y^3 < (x+1)^3

=> y^3 = (x+1)^3 => x^2-1 = 0 => x=-1; y=0 hoặc x=1;y=2

Vậy ........

k mk nha

23 tháng 6 2019

Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)

\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)

do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))

\(\Rightarrow x=\frac{k^2-2}{4}\)

do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)

=> ko tồn tại cặp số nguyên dương x,y tmđkđb

\(PT\Leftrightarrow9x^2+16x+96=9x^2+256y^2+576-96xy+768y-144x.\)

\(\Leftrightarrow256y^2-160x-96xy+768y+480=0\)

\(\Leftrightarrow8y^2-5x-3xy+24y+15=0\)

Đến chỗ này phân tích kiểu j được nhỉ

13 tháng 3 2021

Giả sử tồn tại x, y, z, t thỏa mãn.

Ta chứng minh bổ đề: Cho \(a,b\in\mathbb{Z}\). Khi đó \(a^2+b^2\vdots 3\Leftrightarrow a,b\vdots 3\).

Thật vậy, ta thấy nếu \(a,b\vdots 3\Rightarrow a^2+b^2\vdots 3\).

Nếu \(a^2+b^2\vdots 3\): Do \(a^2,b^2\equiv0;1\left(mod3\right)\) nên ta phải có \(a^2,b^2\equiv0\left(mod3\right)\Rightarrow a,b⋮3\).

Bổ đề dc cm.

Trở lại bài toán: Ta có 2019 chia hết cho 3 nên \(x^2+y^2⋮3\Rightarrow x,y⋮3\Rightarrow x^2+y^2⋮9\).

Mà 2019 không chia hết cho 9 nên \(z^2+t^2⋮3\Leftrightarrow z,t⋮3\).

Đặt x = 3x', y = 3y', z = 3z', t = 3t'.

Ta có \(2019=\dfrac{x^2+y^2}{z^2+t^2}=\dfrac{x'^2+y'^2}{z'^2+t'^2}\).

Cmtt, ta có \(x',y',z',t'⋮3\).

Lặp lại nhiều lần như vậy, ta có \(x,y,z,t⋮3^k\forall k\in N\).

Do đó x = y = z = t = 0 (vô lí).

Vậy không tồn tại...

16 tháng 1 2021

Không hiểu sao cái dòng đó lại nhảy như thế. Mình đánh lại.

Giả thiết tương đương với:

\((x+y+1)(x^2+y^2+1-xy-x-y)=p\).

Do x + y + 1 > 1 và p là số nguyên tố nên x + y + 1 = p và \(x^2+y^2+1-x-y-xy=1\Leftrightarrow\left(x+y\right)^2-\left(x+y\right)=3xy\le\dfrac{3}{4}\left(x+y\right)^2\Rightarrow x+y\le4\Rightarrow p\le5\).

Ta thấy 5 là số nguyên tố. Đẳng thức xảy ra khi x = y = 2.

Vậy max p = 5 khi x = y = 2.