K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

\(\Rightarrow3|y-3|+4\left(2015-x\right)^4=42\)

Vì \(3|y-3|\ge0\Rightarrow4\left(2015-x\right)^4\le42\)

\(\Rightarrow\left(2015-x\right)^4\le\frac{42}{4}=10,5\)

\(\Rightarrow\left(2015-x\right)^4=0\) Hoặc \(\left(2015-x\right)^4=1\)

Bn tự thử 2 trường hợp rùi tìm x và y nha! chúc bn hok tot

11 tháng 4 2020

\(42-3|y-3|=4\left(2015-x\right)^4\)

<=> \(3\left|y-3\right|+4\left(2015-x\right)^4=42⋮3\)(1)

=> \(4\left(2015-x\right)^4⋮3\)

=> \(\left(2015-x\right)⋮3\)

=> \(\left(2015-x\right)^4⋮81\)

=> \(4\left(2015-x\right)^4⋮324\)

Mặt khác từ (1) =>  \(0\le4\left(2015-x\right)^4\le42\)

=> \(\left(2015-x\right)^4=0\)

=> x = 2015 

=> 3 | y - 3 | = 42 

=> | y - 3| = 14  <=> \(\orbr{\begin{cases}y-3=14\\y-3=-14\end{cases}}\Leftrightarrow\orbr{\begin{cases}y=17\\y=-11\end{cases}}\)

Vậy x = 2015 và y = 17 hoặc y = -11

29 tháng 2 2020

Ta có: \(VP\ge0\forall x\)

\(\Rightarrow42-3\left|y-3\right|\ge0\forall y\)

\(\Rightarrow3\left|y-3\right|\le42\)

\(\Rightarrow0\le\left|y-3\right|\le14\)(1)

Mà dễ thấy 42 chẵn, \(4\left(2012-x\right)^4\)chẵn nên \(3\left|y-3\right|\)chẵn

\(\Rightarrow y-3\)chẵn (2)

Từ (1) và (2) suy ra \(\left|y-3\right|\in\left\{2;4;6;8;10;12;14\right\}\)

Mà \(42-3\left|y-3\right|⋮4\)

nên \(\left|y-3\right|\in\left\{2;6;10;14\right\}\)

Thử từng trường hợp ta chỉ thấy \(\left|y-3\right|=14\)thỏa mãn hay \(y\in\left\{17;-11\right\}\)

Lúc đó \(4\left(2012-x\right)^4=0\Rightarrow x=2012\)

11 tháng 4 2020

Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath

Em chỉ cần đổi số 2015 ----> 2012

\(1)\)

\(VT=\left(\left|x-6\right|+\left|2022-x\right|\right)+\left|x-10\right|+\left|y-2014\right|+\left|z-2015\right|\)

\(\ge\left|x-6+2022-x\right|+\left|0\right|+\left|0\right|+\left|0\right|=2016\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-6\right)\left(2022-x\right)\ge0\left(1\right)\\x-10=y-2014=z-2015=0\left(2\right)\end{cases}}\)

\(\left(2\right)\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=10\\y=2014\\z=2015\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-6\ge0\\2022-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge6\\x\le2022\end{cases}\Leftrightarrow}6\le x\le2022}\) ( nhận ) 

TH2 : \(\hept{\begin{cases}x-6\le0\\2022-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le6\\x\ge2022\end{cases}}}\) ( loại ) 

Vậy \(x=10\)\(;\)\(y=2014\) và \(z=2015\)

\(2)\)

\(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=\left|-4\right|=4\)

\(VP=\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\)

\(\Rightarrow\)\(VT\ge VP\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\left(1\right)\\\left|y+1\right|=0\left(2\right)\end{cases}}\)

\(\left(1\right)\)

TH1 : \(\hept{\begin{cases}x-5\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge5\\x\le1\end{cases}}}\) ( loại ) 

TH2 : \(\hept{\begin{cases}x-5\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le5\\x\ge1\end{cases}\Leftrightarrow}1\le x\le5}\) ( nhận ) 

\(\left(2\right)\)\(\Leftrightarrow\)\(y=-1\)

Vậy \(1\le x\le5\) và \(y=-1\)

15 tháng 2 2021

image

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

10 tháng 3 2017

Ta có: \(\left(x-y\right)^3+\left(y-z\right)^2+2015|x-z|=2017\)

Đặt \(\hept{\begin{cases}x-y=a\\y-z=b\end{cases}\left(a,b\in Z\right)}\) thì ta có

\(a^3+b^2+2015|a+b|=2017\)

+ Nếu a lẻ b lẻ thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a lẻ b chẵn thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b lẻ thì a + b là số lẻ \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

+ Nếu a chẵn b chẵn thì a + b là số chẵn \(\Rightarrow\)VT là số chẵn mà VP là số lẻ nên không tồn tại a, b thỏa đề bài.

Vậy không tồn tại a, b nguyên thỏa đề bài hay là không tồn tại x, y, z nguyên dương thỏa đề bài.

mình chưa học

11 tháng 4 2020

Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath

E chỉ cần thay số 2015 ---> 2012 .

27 tháng 8 2020

Do 3| y-3 | lớn hơn hoặc bằng 0 với mọi GT của y nên 4( 2012 - x )4 nhỏ hơn hoặc bằng 42

Suy ra ( 2012 - x )<11 < 24 suy ra 2012 -x =0 hoặc 2012 - x = cộng trừ 1 ( vì 2012 - x lầ số nguyên ( do x nguyên ))

Nếu 2012 - x =cộng trừ 1 suy ra x= 2011 hoặc x=2013 và 38= 3| y-3 |

Suy ra | y-3 |= \(\frac{38}{3}\)( không có GT của y thỏa mãn vì  y nguyên )

Nếu 2012 - x = 0 suy ra x = 2012 và 42 = 3|y-3| suy ra | y-3 | =14 suy ra y = 17 hoặc y = -11

Vậy cặp số (x; y ) thỏa mãn là : ( 2012 ; 17 ) , ( 2012 ; -11 )