K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2021

a) ta thấy (x-1)^2 >/=0

->(x-1)^2 +2008>/= 0

dấu = xảy ra khi và chỉ khi (x-1)^2= 0

<=> x=1

 vậy A có giá trị bằng 2008 khi và chỉ khi x=1

b) Ta có: \(\left|x+4\right|\ge0\forall x\)

\(\Leftrightarrow\left|x+4\right|+1996\ge1996\forall x\)

Dấu '=' xảy ra khi x+4=0

hay x=-4

Vậy: Giá trị nhỏ nhất của biểu thức B=|x+4|+1996 là 1996 khi x=-4

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

28 tháng 2 2021

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

7 tháng 5 2019

\(a,\)\(A=\left(x-1\right)^2+2008\)

Vì \(\left(x-1\right)^2\ge0\)

\(\Rightarrow A_{min}\Leftrightarrow\left(x-1\right)^2=0\)

\(\Rightarrow x-1=0\)

\(\Rightarrow x=1\)

7 tháng 5 2019

\(B=|x+4|+1996\)

Vì \(|x+4|\ge0\)

\(\Rightarrow B_{min}=1996\)\(\Leftrightarrow|x+4|=0\)

\(\Rightarrow x+4=0\)

\(\Rightarrow x=-4\)

8 tháng 4 2023

A = \(\dfrac{2x-1}{x+2}\) 

a, A là phân số ⇔ \(x\) + 2  # 0  ⇒ \(x\) # -2

b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2 

                                          ⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2

                                         ⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2

                                         ⇒ 5 ⋮ \(x\) + 2

                            ⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}

                            ⇒  \(x\)   \(\in\) { -7; -3; -1; 3}

c, A = \(\dfrac{2x-1}{x+2}\) 

  A = 2 - \(\dfrac{5}{x+2}\)

Với \(x\) \(\in\) Z và \(x\) < -3 ta có

                     \(x\) + 2 < - 3 + 2 = -1

              ⇒  \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\)  = -5  ⇒ - \(\dfrac{5}{x+2}\)<  5

              ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)

Với \(x\)  > -3;  \(x\) # - 2; \(x\in\)  Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1

            \(\dfrac{5}{x+2}\) > 0  ⇒  - \(\dfrac{5}{x+2}\)  < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)

Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)

Kết hợp (1); (2) và(3)  ta có A(max) = 7 ⇔ \(x\) = -3

 

                     

             

                                   

     

 

            

4 tháng 7 2019

Lâu rồi không giải bài lớp 6 có gì sai sót xin bỏ qua hé!

1. a, để a+b lớn nhất thì a, b phải lớn nhất 

mà a,b là số nguyên có 4 chữ số nên a, b lớn nhất đều bằng 9999

suy ra a+b lớn nhất là 9999+9999=(tự tính)

b, tương tự trên nhưng a, b đều bằng -9999 (âm nha)

hai câu sau thì tự làm tìm giá trị a,b rồi cộng trừ theo đề.

2. số nguyên âm lớn nhất là -1

Mà  x+2019 là số nguyên âm lớn nhất  suy ra x+2019=-1

tiếp theo tự tính

3.hướng dẫn 

b, \(\left|x-28\right|+7=15\)

\(\Rightarrow\left|x-28\right|=8\)

\(\Rightarrow\orbr{\begin{cases}x-28=8\\x-28=-8\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=36\\x=30\end{cases}}\)

vậy.........................

4. hướng dẫn \(a.b=0\Rightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

a.,,\(\left(x-4\right)\left(x+7\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+7=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=4\\x=-7\end{cases}}\)

Vậy....

b, \(\left(x-5\right)\left(x^2-9\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x^2=9\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)

Vậy.....................

c,\(\left(x^2-7\right)\left(x^2-51\right)< 0\)

(đúng ra mk sẽ giải cách dễ hiểu hơn nhưng hơi rắc rối mà phần mềm này ko hiển thị hết được nên thôi nha)

Hướng dẫn: hai số nhân với nhau mà âm thì hai số đó trái dấu (tức là 1 âm 1 dương)

khi đó số lớn hơn sẽ dương mà số bé hơn sẽ âm

giải:

Ta có Vì \(\left(x^2-7\right)\left(x^2-51\right)< 0\) nên \(x^2-7\)và \(x^2-51\)trái dấu

Mà \(x^2-7\)\(>\)\(x^2-51\)nên \(\Rightarrow\hept{\begin{cases}x^2-7>0\\x^2-51< 0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 51\end{cases}}\)\(\Rightarrow7< x^2< 51\)

Mà \(x\inℤ\)nên \(x^2\)là số chính phương \(\Rightarrow x^2\in\left\{9;16;25;36;49\right\}\)

\(\Rightarrow x\in\left\{3;4;5;6;7\right\}\)

Làm tắt tí hi vọng bạn hiểu!