Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ne-1\)
Ta có :
\(\frac{6}{x+1}.\frac{x-1}{3}=\frac{2x-2}{x+1}=\frac{2x+2-4}{x+1}=2-\frac{4}{x+1}\)
Để tích 2 phân số trên là 1 số nguyên
\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bảng tìm x
x+1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 0 | -2 | 1 | -3 | 3 | -5 |
(nhận) | (nhận) | (nhận) | (nhận) | (nhận) | (nhận) |
Vậy .........
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
Bài này e nghĩ là : Do là tích của hai phân số, nên phải đảm bảo mẫu khác 0. Nếu mẫu không khác ) thì sẽ không tồn tại tích đó. E làm như cô Nguyễn Linh Chi nhưng thêm ĐK thôi ạ :33 . E trình bày :33
Bài làm :
\(ĐK:x\ne-1\)
Ta có : \(\frac{6}{x+1}\cdot\frac{x-1}{3}=\frac{2\left(x-1\right)}{x+1}\)
Để : \(\frac{6}{x+1}\cdot\frac{x-1}{3}\inℤ\) \(\Leftrightarrow\frac{2\left(x-1\right)}{x+1}\inℤ\) mà \(x\inℤ\)
\(\Rightarrow2\left(x-1\right)⋮x+1\)
\(\Leftrightarrow2\left(x+1\right)-4⋮x+1\)
\(\Leftrightarrow4⋮x+1\) hay \(x+1\inƯ\left(4\right)\)
\(\Rightarrow x+1\in\left\{-1,1,-2,2,-4,4\right\}\)
\(\Rightarrow x\in\left\{-2,0,-3,1,-5,3\right\}\) ( thỏa mãn ĐK )
Vậy : \(x\in\left\{-2,0,-3,1,-5,3\right\}\) để \(\frac{6}{x+1}\cdot\frac{x-1}{3}\inℤ\)
Để: \(\frac{6}{x+1}.\frac{x-1}{3}=\frac{2\left(x-1\right)}{x+1}=\frac{2\left(x+1\right)-4}{x+1}=2-\frac{4}{x+1}\)là một số nguyê
<=> \(\frac{4}{x+1}\)là một số nguyên
<=> x + 1\(\in\)Ư ( 4 ) = { -4; -2; -1; 1; 2; 4 }
Em kẻ bảng hoặc xét trường hợp rồi tìm x nhé.
Ta có : \(\frac{6x}{x+1}=\frac{6x+6-6}{x+1}=\frac{6\left(x+1\right)-6}{x+1}=6-\frac{6}{x+1}\)
Để \(\frac{6x}{x+1}\) là số nguyên <=> \(6⋮x+1\)
\(\Rightarrow x+1\inƯ\left(6\right)=\){ - 6; - 3; - 2; - 1; 1; 2; 3 ; 6 }
=> x = { - 7; - 4; - 3; - 2 ; 0 ; 1 ; 2 ; 5 } (1)
Để \(\frac{x-1}{3}\) là số nguyên <=> \(x-1⋮3\)
\(\Rightarrow x-1=3k\Rightarrow x=3k+1\left(k\in Z\right)\)(2)
Từ (1) ; (2) => x = { - 2; 1 }
Vậy x = { - 2; 1 }
Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)
Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)
hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)
Ta có bảng:
x+3 | 1 | -1 | 2 | -2 |
x | -2 | -4 | -1 | -5 |
x-1 | 1 | -1 | 3 | -3 |
x | 2 | 0 | 4 | -2 |
Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)
Làm câu a,b thôi nha !
a)Tính A khi x=1;x=2;x=5/2
x=1
Thay x vào biểu thức A, ta có:
\(\frac{3.x+2}{1-3}=-\frac{5}{2}\)
x=2
Thay x vào biểu thức A ta có:
\(\frac{3.2+2}{2-3}=-\frac{8}{1}=-8\)
x=5/2
Thay x vào biểu thức A ta có:
\(\frac{3.0,4+2}{0,4-3}=\frac{3,2}{-2,6}=\frac{16}{13}\)
b)Tìm x thuộc Z để A là số nguyên:
\(A=\frac{3x+2}{x-3}\)
Để A là số nguyên thì:
=>\(3x+2⋮x-3\)
\(\Rightarrow3x-9+11⋮x-3\)
\(\Rightarrow3\left(x-3\right)+11⋮x-3\)
\(\Rightarrow11⋮x-3\)
\(\Rightarrow x-3\inƯ\left(11\right)=\left\{1;11\right\}\)
Xét trường hợp
\(\orbr{\begin{cases}x-3=1\\x-3=11\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1+3=4\\x=11+3=14\end{cases}}\)
Vậy A là số nguyên thì
\(x\inƯ\left(4;14\right)\)
Các bài còn lại làm tương tự !
1. Ta có: A = \(\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{\sqrt{x}-3+4}{\sqrt{x}-3}=1+\frac{4}{\sqrt{x}-3}\)
Để A \(\in\)Z <=> \(4⋮\sqrt{x}-3\) <=> \(\sqrt{x}-3\inƯ\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
Lập bảng:
\(\sqrt{x}-3\) | 1 | -1 | 2 | -2 | 4 | -4 |
\(\sqrt{x}\) | 4 | 2 | 5 | 1 | 7 | -1 (loại) |
x | 16 | 4 | 25 | 1 | 49 |
Vậy ....
2. Ta có: B = \(\frac{x^2+15}{x^2+3}=\frac{\left(x^2+3\right)+12}{x^2+3}=1+\frac{12}{x^2+3}\)
Do x2 + 3 \(\ge\)3 \(\forall\)x => \(\frac{12}{x^2+3}\le4\forall x\)
=> \(1+\frac{12}{x^2+3}\le5\forall x\)
Dấu "=" xảy ra <=> x = 0
Vậy Max B = 5 khi x = 0