Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Để C nguyên thì \(x^2-3\in\left\{-1;1;5\right\}\)
\(\Leftrightarrow x^2=4\)
hay \(x\in\left\{2;-2\right\}\)
\(b,B=\dfrac{2x-1}{x-1}=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\)
Do \(2\in Z\Rightarrow\)\(\dfrac{1}{x-1}\in Z\Rightarrow x-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(x-1\) | \(1\) | \(-1\) |
\(x\) | \(2\) | \(0\) |
a: ĐKXĐ: x>0
Để A là số nguyên thì \(7⋮\sqrt{x}\)
=>\(\sqrt{x}\in\left\{1;7\right\}\)
=>\(x\in\left\{1;49\right\}\)
b: ĐKXĐ: x>1
Để B là số nguyên thì \(3⋮\sqrt{x-1}\)
=>\(\sqrt{x-1}\in\left\{1;3\right\}\)
=>\(x-1\in\left\{1;9\right\}\)
=>\(x\in\left\{2;10\right\}\)
c: ĐKXĐ: x>3
Để C là số nguyên thì \(2⋮\sqrt{x-3}\)
=>\(\sqrt{x-3}\in\left\{1;2\right\}\)
=>\(x-3\in\left\{1;4\right\}\)
=>\(x\in\left\{4;7\right\}\)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}=\dfrac{x+y+z+t}{y+z+t+x}=1\\ \Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=t\\t=x\end{matrix}\right.\Rightarrow x=y=z=t\\ \Rightarrow M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}=2\)
a.A= \(\frac{7}{2x-3}\)
Vì 7 thuộc Z nên để x là số nguyên => 7/2x-3 thuộc Z
=> 2x-3 thuộc Ư(7)={1;-1;7;-7}
(tm)
Vậy...
b) \(B=\frac{2x-1}{x-1}=\frac{2\left(x-1\right)}{x-1}+\frac{3}{x-1}=2+\frac{3}{x-1}\)
Vì 2 thuộc Z nên để x là số nguyên => 3/x-1 thuộc Z
=> x-1 thuộc Ư(3)={-1;1;-3;3}
(tm)
Vậy....
c) C=5/x^2-3
Vì 5 thuộc Z nên để x là số nguyên => x^2-3thuộc Z
=> x^2-3 thuộc Ư(5)={1;-1;5;-5}
căn 10 (k/tm)
Vậy x thuộc 2 hoặc -2