K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

a) Để \(\left(x+1\right)\left(x+5\right)>0\) thì x + 1 và x + 5 đồng dấu.

Ta có 2 trường hợp:

TH1:\(\hept{\begin{cases}x+1>0\\x+5>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-1\\x>-5\end{cases}}\Leftrightarrow x>-1\)

TH2: \(\hept{\begin{cases}x+1< 0\\x+5< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x< -1\\x< -5\end{cases}}\Leftrightarrow x< -5\)

Vậy x > -1 hoặc x < -5

b) \(x\left(x-3\right)\le0\) 

+)Xét x(x - 3) = 0.

Ta có: \(x\left(x-3\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)  (1)

+)Xét \(x\left(x-3\right)< 0\) thì x và x - 3 trái dấu.Xét 2 TH:

TH1: \(\hept{\begin{cases}x>0\\x-3< 0\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x< 3\end{cases}}\Leftrightarrow0< x< 3\) (2)

TH2: \(\hept{\begin{cases}x< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>3\end{cases}}\) (loại)

Kết hợp (1) và (2) ta được: \(0\le x\le3\)

11 tháng 12 2021

\(a,\left(x+12\right)\left(x-6\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>-12\\x>6\end{matrix}\right.\\\left\{{}\begin{matrix}x< -12\\x< 6\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\)

\(b,\left(10-x\right)\left(3-x\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}10-x< 0\\3-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}10-x>0\\3-x< 0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>10\\x< 3\left(vô.lí\right)\end{matrix}\right.\\\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x< 10\\x>3\end{matrix}\right.\)

 

 

11 tháng 12 2021

\(a,\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+12>0\\x-6>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+12< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>6\\x< -12\end{matrix}\right.\\ \Rightarrow x\in\left\{...;-15;-14;-13;7;8;9;...\right\}\\ b,\Rightarrow\left(x-10\right)\left(x-3\right)< 0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10>0\\x-3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10< 0\\x-3>0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>10;x< 3\left(\text{loại}\right)\\3< x< 10\end{matrix}\right.\\ \Rightarrow x\in\left\{4;5;6;7;8;9\right\}\)

5 tháng 1 2023

\(a,\left(8-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}8-x=0\\x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-5\end{matrix}\right.\\ b,2x\left(x+81\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x+81=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-81\end{matrix}\right.\)

5 tháng 1 2023

a)\(\left(8-x\right)\left(x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}8-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=8\\x=-5\end{matrix}\right.\)
b)\(2x\left(x+81\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x+81=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-81\end{matrix}\right.\)

9 tháng 1 2022

\(a,\left(8+x\right)\left(6-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}8+x=0\\6-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-8\\x=6\end{matrix}\right.\\ b,x^2-5x=0\\ \Rightarrow x\left(x-5\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)

9 tháng 1 2022

a) (8+x).(6-x)=0
<=> 8+x = 0 hoặc 6-x = 0
=> x = -8 hoặc x = 6

b) c) x^2 - 5x=0
<=> x^2 = 0 hoặc -5x = 0
=> x = 0 hoặc x = 5

a: =>x+28=0

=>x=-28

b: =>27-x=0 hoặc x+9=0

=>x=27 hoặc x=-9

c: =>x=0 hoặc x-43=0

=>x=0 hoặc x=43

14 tháng 2 2022

a)\(\dfrac{4}{x}=\dfrac{x}{16}\)

<=>\(x^2=4.16=64\)

<=>\(x=\pm8\)

<=>x=-8(vì x<0)

b)\(\dfrac{x}{-24}=\dfrac{-6}{x}\)

<=>\(x^2=\left(-24\right)\left(-6\right)=144\)

<=>\(x=\pm12\)

<=>x=12(Vì x>0)

10 tháng 8 2023

a) \(x\left(x-6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b) \(\left(-7-x\right)\left(-x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-7\\x=-5\end{matrix}\right.\)

c) \(\left(x+3\right)\left(x-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=7\end{matrix}\right.\)

d) \(\left(x-3\right)\left(x^2+12\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\text{(vô lý)}\end{matrix}\right.\)

\(\Rightarrow x=3\)

e) \(\left(x+1\right)\left(2-x\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x+1\ge0\\2-x\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x+1\le0\\2-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\ge-1\\x\le2\end{matrix}\right.\\\left[{}\begin{matrix}x\le-1\\x\ge2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-1\le x\le2\\x\in\varnothing\end{matrix}\right.\)

\(\Rightarrow-1\le x\le2\)

f) \(\left(x-3\right)\left(x-5\right)\le0\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x-3\le0\\x-5\ge0\end{matrix}\right.\\\left[{}\begin{matrix}x-3\ge0\\x-5\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x\le3\\x\ge5\end{matrix}\right.\\\left[{}\begin{matrix}x\ge3\\x\le5\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow3\le x\le5\)

a) =>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

b => \(\left[{}\begin{matrix}-7-x=0\\-x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\)

d) => \(\left[{}\begin{matrix}x-3=0\\x^2+12=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-12\end{matrix}\right.\)(vô lí) => x=3

a: =>xy=-18

=>x,y khác dấu

mà x<y<0 

nên không có giá trị nào của x và y thỏa mãn yêu cầu đề bài

b: =>(x+1)(y-2)=3

\(\Leftrightarrow\left(x+1,y-2\right)\in\left\{\left(1;3\right);\left(3;1\right);\left(-1;-3\right);\left(-3;-1\right)\right\}\)

hay \(\left(x,y\right)\in\left\{\left(0;5\right);\left(2;3\right);\left(-2;-1\right);\left(-4;1\right)\right\}\)

c: \(\Leftrightarrow8x-4=3x-9\)

=>5x=-5

hay x=-1

26 tháng 12 2021

\(a,\left(x+3\right)\left(5-x\right)=0\\ \Rightarrow\left\{{}\begin{matrix}x+3=0\\5-x=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=5\end{matrix}\right.\)

\(c,x+17⋮x+3\\ x+3+14⋮x+3\\ 14⋮x+3\\ x+3\inƯ\left(14\right)=\left\{\pm14;\pm7\pm2;\pm1\right\}\)

Từ đó bạn tìm những giá trị của x nha!

21 tháng 12 2021

b: -7<x<7