Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{x^2-5x+9}{x-3}\in Z\)
Ta có: \(\dfrac{x^2-5x+9}{x-3}\left(x\ne3\right)=\dfrac{x\left(x-3\right)-2\left(x-3\right)+3}{x-3}=x-2+\dfrac{3}{x-3}\)nguyên khi và chỉ khi: \(\left(x-3\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\\x-3=3\\x-3=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\\x=6\\x=0\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{0;2;4;6\right\}\).
(b) \(f\left(x\right)⋮g\left(x\right)\Rightarrow\dfrac{2x^3-x^2+6x+2}{2x-1}\in Z\left(x\ne\dfrac{1}{2}\right)\)
Ta có: \(\dfrac{2x^3-x^2+6x+2}{2x-1}=\dfrac{x^2\left(2x-1\right)+3\left(2x-1\right)+5}{2x-1}=x^2+3+\dfrac{5}{2x-1}\)
nguyên khi và chỉ khi: \(\left(2x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
\(\Rightarrow\left[{}\begin{matrix}2x-1=1\\2x-1=-1\\2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\\x=3\\x=-2\end{matrix}\right.\) (thỏa mãn).
Vậy: \(x\in\left\{-2;0;1;3\right\}\).
a: f(x) chia hết cho g(x)
=>x^2-3x-2x+6+3 chia hết cho x-3
=>3 chia hết cho x-3
=>x-3 thuộc {1;-1;3;-3}
=>x thuộc {4;2;6;0}
b: f(x) chia hết cho g(x)
=>2x^3-x^2+6x-3+5 chia hết cho 2x-1
=>5 chia hết cho 2x-1
=>2x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;3;-2}
\(3x+1⋮x-1\)
\(\Leftrightarrow3x-3+4⋮x-1\)
\(\Leftrightarrow3x-3=3\left(x-1\right)⋮x-1\)
\(\Leftrightarrow4⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(x\inƯ\left(4\right)=\left\{-3;-1;0;2;3;5\right\}\)
Dấu \(\Leftrightarrow\) ở đoạn \(3x-3=3\left(x-1\right)⋮x-1\) là không hợp lý bạn nhé. Đoạn đấy bạn cần giải thích vì $3x-3=3(x-1)\vdots x-1$ nên việc $3x-3+4\vdots x-1$ suy ra $4\vdots x-1$
\(\left(x^3+3x^2+2x\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(x^3+3x^2+2x+6-6\right)⋮\left(x+3\right)\)
\(\Rightarrow\left(\left(x+3\right)\left(x^2+2\right)-6\right)⋮\left(x+3\right)\)
\(\Rightarrow6⋮\left(x+3\right)\) do \(\left(x+3\right)\left(x^2+2\right)⋮\left(x+3\right)\)
\(\Rightarrow x+3=Ư\left(6\right)=\left\{-6;-3;-2;-1;1;2;3;6\right\}\)
\(\Rightarrow x=\left\{-9;-6;-5;-4;-2;-1;0;3\right\}\)
=>x^3-2x-3x^2+6-x-7 chia hết cho x^2-2
=>-x-7 chia hết cho x^2-2
=>x^2-49 chia hết cho x^2-2
=>x^2-2 thuộc Ư(-47)
=>x^2-2 thuộc {1;-1;47;-47}
mà x là số nguyên
nên x thuộc {1;-1;7;-7}
a, ta có
4a12b
để 4a12b chia hết cho 2 và 5
=> 4a12b có tận cùng là 5
=> b = 0
để 4a12b chia hết cho 9
=> ( 4 + a + 1 + 2 + b ) chia hết cho 9
=> a + 7 chia hết cho 9
=> \(a\in\left\{2;16;25;...\right\}\)
vậy \(a\in\left\{2;16;25;...\right\}\) và \(b=0\)
Answer:
\(2x+9⋮3x+1\)
\(\Rightarrow3\left(2x+9\right)⋮3x+1\)
\(\Rightarrow6x+27⋮3x+1\)
\(\Rightarrow2\left(3x+1\right)+25⋮3x+1\)
\(\Rightarrow25⋮3x+1\)
\(\Rightarrow3x+1\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
\(\Rightarrow3x\in\left\{-2;0;-6;4;-26;24\right\}\)
\(\Rightarrow x\in\left\{0;-2;8\right\}\)