K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2018

5=7-2=2+3 tk nha

DD
8 tháng 3 2022

Ba số nguyên tố có tổng là \(38\)là một số chẵn nên trong ba số đó có số \(2\).

Tổng hai số còn lại là \(36\).

Gọi hai số đó là \(a,b\).

Ta có: \(a^2+b^2=\left(a+b\right)^2-2ab=36^2-2ab\)

Để \(\left(a^2+b^2\right)_{max}\)thì \(ab\)đạt min. 

Nếu \(a=b\)thì \(a=b=18\)không là số nguyên tố.

Không mất tính tổng quát, giả sử \(a>b>0\) 

Ta có nhận xét rằng \(a-b\)càng lớn thì \(ab\)càng nhỏ. 

Thật vậy, nếu ta thay \(a\)bằng \(a+1\)và \(b\)bằng \(b-1\)thì: 

\(\left(a+1\right)\left(b-1\right)=ab-a+b-1=ab-\left(a-b\right)-1< ab\)

Do đó để thỏa mãn ycbt thì ta cần tìm hai số nguyên tố \(a,b\)sao cho \(a+b=36\)và \(b\)nhỏ nhất. 

Với \(b=3\Rightarrow a=33\)loại. 

Với \(b=5\Rightarrow a=31\)(thỏa mãn) 

Vậy ba số nguyên tố thỏa mãn ycbt là \(2,5,31\).

Khi đó tổng bình phương lớn nhất là: \(2^2+5^2+31^2=990\).

8 tháng 3 2022

=990 nha ht

Các số nguyên tố lớn hơn 3 khi chia cho 12 thì dư 11; 7; 5 hoặc 1; mà 5 + 7 = 1 + 11 = 12 chia hết cho 12

nên nếu chia 4 số dư này thành 2 nhóm là (5; 7) và (1; 11

) thì với ba số bất kì đang có khi chia cho 12 sẽ có số dư thuộc 1 trong 2 nhóm trên. (nguyên lí Dirichlet) 

31 tháng 12 2016

Ta thấy: Một số nguyên tố lớn hơn 3 khi chia cho 12 luôn có số dư là 1;5;7;11.

     Ta chia 4 số dư trên thành 2 nhóm:

  + Nhóm 1: Những số nguyên tố chia cho 12 có số dư là 1 và 11.

  + Nhóm 2:Những số nguyên tố chia cho 12 có số dư là 5 và 7.

Theo nguyên lí Đi-rích-lê,có 3 số mà có 2 nhóm thì ít nhất có 1 nhóm có 2 số.

  => Tổng của chúng chia hết cho 12.

Trong 3 số thì ít nhất phải có 2 số có cùng số dư.

  => Hiệu của chúng chia hết cho 12.

19 tháng 11 2017

a, nếu P=2 => P+2=2+2=4 (loại)

nếu P=3 => P+2=3+2=5       

                    P+10 = 3+10=13 (thỏa mãn)

nếu P>3 => P= 3k+1 hoặc 3k+2

        + P= 3k+1=>P+2=3k+1+2=3k+3=3(k+1)   (loại)

        + P=3k+2=>P+10=3k+2+10=3k+12=3(k+4) (loại)

vậy P=3 thỏa mãn bài toán