K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NQ
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NK
0
AH
Akai Haruma
Giáo viên
15 tháng 8 2021
Lời giải:
Nếu $x$ lẻ thì $x^y+1$ chẵn, mà $x^y+1>2$ với $x,y\in\mathbb{P}$ nên $x^y+1$ không thể là số nguyên tố (trái giả thiết)
Do đó $x$ chẵn $\Rightarrow x=2$
$x^y+1=2^y+1$
Nếu $y$ chẵn thì $y=2$. Khi đó $x^y+1=2^2+1=5$ cũng là snt (tm)
Nếu $y$ lẻ:
$x^y+1=2^y+1\equiv (-1)^y+1\equiv -1+1\equiv \pmod 3$
Mà $2^y+1>3$ với mọi $y$ nguyên tố lẻ nên $2^y+1$ không là snt (trái giả thiết)
Vậy $x=y=2$
HN
2
26 tháng 2 2020
Ta xét : Các số nguyên tố nhỏ hơn 10 là : 2;3;5;7
Như vậy r thuộc {2;3;5;7}
Với r = 2 => A = 32 chia hết cho 2 < Loại>
Với r = 3 => A = 33 chia hết cho 3 < Loại>
Với r = 5 => A = 35 chia hết cho 5 < Loại>
Với r=7 => A = 37 < Chọn >
Vậy A = 37
Trả lời:
Cho p=2
=>3p^2+1, 24p^2+1 là số nguyên tố
p>2
mà p là số nguyên tố
=>p là số lẻ
=>3p^2+1 là số chẵn >2
=>3p^2+1 là hợp số(vô lý)
Vậy p=2