Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Với p = 2 thì p2 + 2 = 22 + 2 = 4 + 2 = 6 (loại vì là hợp số)
+) Với p = 3 thì \(\hept{\begin{cases}2p-1=2.3-1=6-1=5\\p^2+2=3^2+2=9+2=11\end{cases}}\left(tm\right)\)
+) Với p > 3, p có dạng 3k + 1 hoặc 3k + 2
TH1: p = 3k + 1
\(\Rightarrow p^2+2=\left(3k+1\right)^2+2=9k^2+6k+1+2=9k^2+6k+3⋮3\)(loại)
TH2: p = 3k + 2
\(\Rightarrow2p-1=2\left(3k+2\right)-1=6k+4-1=6k+3⋮3\) (loại)
Vậy p = 3
p và 2p+1 nguyên tố
* nếu p = 3 thì p và 2p+1 đều nguyên tố, 4p+1 = 13 nguyên tố
* xét p # 3
=> 2p không chia hết cho 3, và 2p+1 là số nguyên tố > 3 nên không chia hết cho 3
=> 2p+2 chia hết cho 3 (do 3 số nguyên liên tiếp phải có 1 số chia hết cho 3)
=> 2(2p+2) = 4p+4 = 4p+1+3 chia hết cho 3 => 4p+1 chia hết cho 3
kết luận: 4p+1 nguyên tố nếu p = 3, và là hợp số nếu p nguyên tố # 3
a: Trường hợp 1: p=2
=>p+11=13(nhận)
Trường hợp 2: p=2k+1
=>p+11=2k+12(loại)
b: Trường hợp 1: p=3
=>p+8=11 và p+10=13(nhận)
Trường hợp 2: p=3k+1
=>p+8=3k+9(loại)
Trường hợp 3: p=3k+2
=>p+10=3k+12(loại)