K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

Thắng Nguyễn alibaba nguyễn Hoàng Lê Bảo Ngọc  help me

3 tháng 10 2018

a) \(\frac{1}{9}\cdot27^n=3^n\)

\(\frac{1}{9}=\frac{3^n}{27^n}\)

\(\frac{1}{9}=\frac{3^n}{3^{3n}}\)

\(\frac{1}{9}=\frac{1}{3^{2n}}\)

=> 32n = 9 = 32

=> 2n = 2

=> n = 1

24 tháng 5 2020

đây đâu phải toán lớp 1

24 tháng 5 2020

cũng ko phải bài toán lớp 2

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

4 tháng 12 2015

chẳng có quả nào vì cây lê ko phải cây táo 

tích mình nha

21 tháng 9 2015

mình làm đầu  tiên

ở giữa chúng có 54 số chẵn thì có 53 khoảng, mỗi khoảng cách nhau 2 đơn vị thì
53 x 2 -= 106

Ở hai đầu có hai số lẽ nên :

106 + 2 = 108

Hiệu là 108
Số bé là :
(1142 - 108) : 2 = 517
Số lớn là :
517 + 108 = 625
Đáp số, 517 và 625

14 tháng 1 2017

ko có quả nào

tk mk nha

14 tháng 1 2017

đừng hỏi bá đạo quá

20 tháng 11 2017

câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu

câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)