Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ƯCLN\(\left(2n+3;3n+7\right)=d\)
\(\Rightarrow\orbr{\begin{cases}2n+3⋮d\Rightarrow3.\left(2n+3\right)⋮d\Rightarrow6n+9⋮d\\3n+7⋮d\Rightarrow2.\left(3n+7\right)⋮d\Rightarrow6n+14⋮d̸\end{cases}}\)
\(\Rightarrow\left(6n+14\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow5⋮d\Rightarrow d\in1;5\)
\(+d=5\Rightarrow6n+9⋮5\Rightarrow5n+\left(n+9\right)⋮5\)
\(\Rightarrow n+9⋮5\Rightarrow n+4⋮5\Rightarrow n=5k-4\)
Vậy n=5k-4 thì rút gọn đc
Vậy \(n\ne5k-4\Rightarrowđpcm\)
a) \(\frac{2n+3}{4n+1}\) là phân số tối giản
\(\frac{2n+3}{4n+1}\)= \(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1
=>n=1
mình ko chắc là đúng nha
Gọi ước chung lớn nhất của n - 5 và 3n - 14 là d, ta có
3 ( n - 5) - ( 3n - 14)= -1 chia hết cho d
=> d = -1 hoặc 1, do đó n - 5 và 3n - 14 là nguyên tố cùng nhau
vậy n - 5/3n - 14 là phân số tối giản
Gọi \(d=ƯC\left(3n+15,n+4\right)\)
\(\Rightarrow\left\{{}\begin{matrix}3n+15⋮d\\n+4⋮d\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}3n+15⋮d\\3n+12⋮d\end{matrix}\right.\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\inƯ\left(3\right)=\left\{1,3\right\}\)
Thay vào
\(\Rightarrow d=1\)
Để 3n+15/n+4 là PSTG thì 3n+15 chia hết cho n+4
Mà n+4 cũng chia hết cho n+4 => 3(n+4) chia hết cho n+4 =>3n+12 chia hết cho n+4
=>(3n+12)-(3n+4) chia hết cho n+4
=>3n+12-3n-4 chia hết cho n+4
=>8 chia hết cho n+4
=>n+4 thuộc Ư(8)={1; -1 ;2; -2 ;4; -4 ;8; -8 } , ta có bản
n+4 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | -3 | -5 | -2 | -6 | 0 | -8 | 4 | -12 |
Vậy n = {-3; -5; -2; -6; 0; -8; 4; -12}
a, phân số 2n -5 / 3n - 2 là số nguyên khi : 2n - 5 chia hết cho 3n - 2 => 3. ( 2n - 5 ) chia hết cho 3n - 2
=> 6n - 15 chia hết cho 3n - 2
=> ( 6n - 4 ) - 11 chia hết cho 3n - 2
=> 2.(3n - 2) - 11 chia hết cho 3n -2
=> - 11 chia hết cho 3n - 2
=> 3n - 2 là ước của 11. ta có Ư(11) = { -11; -1 ; 1 ; 11 }
=> 3n - 2 = -11 => n = -3 ( thỏa mãn )
các con khác làm tương tự. ta tìm được n = { -3 ; 1}
Soa sánh A và B biết: A=\(\frac{6^{2016}+4}{6^{2016}-1}\)và B=\(\frac{6^{2016}}{6^{2016}-1}\)
Đặt \(d=\left(3n+2,2n+7\right)\).
Suy ra \(\hept{\begin{cases}3n+2⋮d\\2n+7⋮d\end{cases}}\Rightarrow3\left(2n+7\right)-2\left(3n+2\right)=17⋮d\).
\(\Rightarrow\orbr{\begin{cases}d=1\\d=17\end{cases}}\)
Để \(\frac{3n+2}{2n+7}\)là phân số tối giản thì \(d\ne17\)do đó \(3n+2\ne17k\Leftrightarrow n\ne\frac{17k-2}{3}\left(k\inℤ\right)\).