Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.(n+1)(n+3)=0
n+1=0=>n=-1
hoặc n+3=0=>n=-3
Vậy n=-1 hoặc n=-3
b./(n+2)(n2-1)/=0
n+2=0=>n=-2
hoặc n2-1=0=>n=1
Vậy n=-2 hoặc n=1
1
a)\(\Rightarrow\orbr{\begin{cases}n+1=0\\n+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}\)
b)\(\Rightarrow\orbr{\begin{cases}\left|n\right|+2=0\\n^2-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}\varphi\\n^2=1\end{cases}}\Rightarrow\orbr{\begin{cases}\varphi\\n=1;-1\end{cases}}\)
a) (n + 1)(n + 3) = 0
\(\Rightarrow\orbr{\begin{cases}n+1=0\\n+3=0\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=-3\end{cases}}}\)
b) (|n| + 2)(n2 - 1) = 0
\(\Rightarrow\orbr{\begin{cases}\left|n\right|+2=0\\n^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}\left|n\right|=-2\\n^2=1\end{cases}}}\)
Vì \(\left|n\right|\ge0\)
Mà \(-2< 0\)
=> Không có giá trị thõa mãn
Vậy n2 = 1 = 12 = (-1)2
=> n = {1 ; -1}
Bài 2
25 = 5.5 = 52
36 = 6.6 = 62
49 = 7.7 = 72
Ta có: \(A=\dfrac{3}{n+2}\left(\forall n\in Z\right)\)
a) Để \(A\) là phân số thì \(n+2\ne0\Leftrightarrow n\ne-2\)
Vậy \(n\ne-2\) thì \(A\) là phân số.
b) Thay \(n=0;n=2;n=-7\) lần lượt vào \(A\) ta có:
\(\left\{{}\begin{matrix}A=\dfrac{3}{0+2}=\dfrac{3}{2}\\A=\dfrac{3}{2+2}=\dfrac{3}{4}\\A=\dfrac{3}{-7+2}=\dfrac{-3}{5}\end{matrix}\right.\)
c) Để \(A\in Z\Rightarrow\left(n+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n\in\left\{-1;-3;1;-5\right\}\)
Vậy \(n\in\left\{-1;-3;1;-5\right\}\) thì \(A\in Z\)
\(A=\frac{4}{2n-1}\)
a, ĐK : \(2n-1\ne0\Leftrightarrow n\ne\frac{1}{2}\)
b, Khi n = 0
\(A=\frac{4}{2.0-1}=\frac{4}{0-1}=\frac{4}{-1}=-4\)
Khi n = 3
\(A=\frac{4}{2.3-1}=\frac{4}{6-1}=\frac{4}{5}\)
Khi n = 5
\(A=\frac{4}{2.5-1}=\frac{4}{10-1}=\frac{4}{9}\)
c, Để \(A\in Z\)thì \(4⋮2n-1\)hay \(2n-1\inƯ\left(4\right)\)
Ta có bảng sau :
Ư(4) | 2n-1 | n |
1 | 1 | 1 ( TM) |
-1 | -1 | 0 ( TM ) |
2 | 2 | 3/2 ( Loại ) |
-2 | -2 | -1/2 ( Loại ) |
4 | 4 | 5/2 ( Loại ) |
-4 | -4 | -3/2 ( Loại ) |
Vậy để A nguyên thì \(n\in\left\{1;0\right\}\)
a) (n+1)(n+3) = 0
n + 1= 0 => n = -1
n + 3= 0 => n = -3
(n+1)(n+3)=0
<=>n+1=0 hoặc n+3=0
<=>n=-1 hoặc n=-3
vậy n E {-3;-1]
(|n|+2)(n^2-1)=0<=>|n|+2=0 hoặc n^2-1=0
<=>|n|=-2 (vô lí,loại) hoặc n^2=1=>n=1
vậy n E {1}