K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HT
22 tháng 7 2015
-11 là bội của n-1
=> -11 chia hết cho n-1
=> n-1 thuộc Ư(-11)
n-1 | n |
1 | 2 |
-1 | 0 |
11 | 12 |
-11 | -10 |
KL: n thuộc......................
VN
18 tháng 9 2018
Làm tự luận nha các ban! Thời hạn là trước 7h nha vì 7h30 mi địch học rủi.
8 tháng 1 2016
Nếu tôi ngu thì cậu thử làm đi?Cả cách làm cụ thể nhé!
16 tháng 1 2021
c, \(n-1⋮3n+2\Leftrightarrow3n-3⋮3n+2\)
\(\Leftrightarrow3n+2-5⋮3n+2\Leftrightarrow-5⋮3n+2\)
hay \(3n+2\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}\)
3n + 2 | 1 | -1 | 5 | -5 |
3n | -1 | -3 | 3 | -7 |
n | -1/3 | -1 | 1 | -7/3 |
Vì n thuộc N => n = { 1 ; -1 }
16 tháng 1 2021
b, hay : \(n-2\inƯ\left(-11\right)=\left\{\pm1;\pm11\right\}\)
n - 2 | 1 | -1 | 11 | -11 |
n | 3 | 1 | 13 | -9 |
30 tháng 7 2021
. .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj
a) n+2 chia hết cho n-1
n+2=n-1+3 chia hết cho n-1
=> 3 chia hết cho n-1 hay n-1\(\in\)Ư(3)={-1;1;-3;3}
n\(\in\){0;2;-2;4}
b) 2n-3 là bội của n+4 nghĩa là 2n-3 chia hết cho n+4
2n-3=2(n+4)-11 chia hết cho n+4
=> 11 chia hết cho n+4 hay n+4\(\in\)Ư(11)={-1;1;-11;11}
n\(\in\){-5;-3;-15;7}
c) n-7 chia hết cho 2n+3
n-7=2(n-7) chia hết cho 2n+3
2(n-7)=2n+3-17 chia hết cho 2n+3
=> 17 chia hết cho 2n+3 hay 2n+3\(\in\)Ư(17)={-1;1;-17;17}
n\(\in\){-2;-1;-10;7}
d) n+5 chia hết cho n-2
n+5=n-2+7 chia hết cho n-2
=> 7 chia hết cho n-2 hay n-2\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){1;3;-5;9}
e) n2 -2 là bội của n+3
n2-2=n(n+3)-3n-2=n(n+3)-3(n+3)+7 chia hết cho n-2
n(n+3) và 3(n+3) cùng chia hết cho n+3
=> 7 chia hết cho n+3 hay n+3\(\in\)Ư(7)={-1;1;-7;7}
n\(\in\){-4;-2;-10;4}
f) 3n-13 là ước của n-2 nghĩa là n-2 chia hết cho 3n-13
n-2 chia hết cho 3n-13 => 3(n-2) chia hết cho 3n-13
3(n-2)=3n-13+7 chia hết cho 3n-13
=> 7 chia hết cho 3n-13 hay 3n-13\(\in\)Ư(7)={-1;1-7;7}
n\(\in\){4;2;}
g) In+19I + In+5I + In+2011I = 4n
n+19+n+5+n+2011=-4n
TH1: 3n+2035=-4n => n=(-2035) :7 (loại)
TH2: n+19+n+5+n+2011=4n
3n+2035=4n => n=2035