Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 5 chia hết cho 2n - 1
=> 2 ( n + 5 ) chia hết cho 2n - 1
=> 2n + 10 chia hết cho 2n - 1
2n - 1 + 11 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 11 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư( 11 )
=> 2n - 1 thuộc { - 1 ; 1 ; 11 ; - 11 }
=> 2n thuộc { 0 ; 2 ; 12 ; - 10 }
=> n thuộc { 0 ; 1 ; 6 ; - 5 }
\(\left(x-2\right)\left(y-1\right)=5\)
\(\Rightarrow\left(x-2\right);\left(y-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Xét các trường hợp :
- \(\hept{\begin{cases}x-2=5\\y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=7\\y=2\end{cases}}}\)
- \(\hept{\begin{cases}x-2=-5\\y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=0\end{cases}}}\)
- \(\hept{\begin{cases}x-2=1\\y-1=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=6\end{cases}}}\)
- \(\hept{\begin{cases}x-2=-1\\y-1=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-4\end{cases}}}\)
Do n+1\(⋮\)n+1 => 2n+2\(⋮\)n+1.
Theo đề bài => 2n+2-(2n-1)\(⋮\)n+1 hay 3\(⋮\)n+1
=> n+1\(\in\){-3;-1;1;3}
Vậy n\(\in\){-4;-2;0;3}
2n + 1 chia hết cho n - 3
Ta có: 2n + 1 = 2( n - 3) + 7
Để 2n +1 chia hết cho n -3 thì 7 chia hết cho n - 3
=> n - 3 thuộc Ư(7) = { 1;-1;7;-7 }
=> n thuộc { 4;3;10;-4 }
6n+4 chia hết cho 2n+1
Ta có: 6n+4=3(2n+1)+1
Để 6n+4 chia hết cho 2n+1 thì 1 chia hết cho 2n + 1
=> 2n+1 thuộc Ư( 1)={1;-1}
=> n thuộc {0; -1}
2n + 3 chia hết cho n - 2
=>( 2n - 4) + 7 chia hết cho n - 2
=> 7 chia hết cho n - 2
=> n - 2 thuộc ước của 7 là 1 , 7
=> n bằng 3 , 9
Ta có 2n+1=2(n-3)+7
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-3 | -7 | -1 | 1 | 7 |
n | -4 | 2 | 4 | 10 |
*) Ta có 6n+4=3(2n+1)+1
=> 1 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)
Nếu 2n+1=-1 => 2n=-2 => n=-1
Nếu 2n+1=1 => 2n=0 => n=0
2n + 1 chia hết cho n - 3
2n + 1 = 2n - 6 + 7 = 2(n - 3) + 7
Vì 2n + 1 chia hết cho n - 3 và 2(n - 3) chia hết cho n - 3
=> 7 chia hết cho n - 3
=> n - 3 là ước nguyên của 7
Ta có bảng sau :
n - 3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |
a)
Ta có:
(n-1)∈Ư(15)={±1;±3;±5;±15}
=>n∈{2;0;4;-2;6;-4;16;-14}
Vậy: n∈{2;0;4;-2;6;-4;16;-14}
b)
Ta có:
2n-1 chia hết cho n-3
=>2(n-3)+5 chia hết cho n-3
=> 5 chia hết cho n-3
=> (n-3)∈Ư(5)={±1;±5}
=>n∈{4;2;8;-2}
Vậy: n∈{4;2;8;-2}
a, n-1 \(\in\)Ư(15)
\(\Rightarrow\)n - 1 \(\in\){ 1; -1 ; 3 ; -3 ; 5 ; -5 ; 15 ; -15}
\(\Rightarrow\)n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
Vậy n \(\in\){ 2 ; 0 ; 4 ;-2 ; 6 ; -4 ; 16 ; -14 }
b, 2n-1 \(⋮\)n - 3
( n -3 ) + ( n -3 ) + 5 \(⋮\)n - 3
Vì n - 3 \(⋮\)n - 3
nên 5 \(⋮\)n - 3
\(\Rightarrow\)n - 3 \(\in\){ 1; -1 ; 5 ; -5 }
\(\Rightarrow\)n \(\in\){ 4 ; 2 ; 8 ; -2 }
Vậy n \(\in\){ 4 ; 2 ; 8 ; -2 }
~ HOK TỐT ~
+)n - 2 chia hết cho n + 1
=>n - 2 \(⋮\)n + 1
=>n + 1 - 3 \(⋮\) n + 1
Mà n + 1 \(⋮\) n + 1 nên 3 \(⋮\) n + 1
=> n + 1\(\in\)Ư(3) = {-1;1;-3;3}
=>n + 1\(\in\) {-1;1;-3;3}
=> n \(\in\){-2;0;-4;2}
Vậy n \(\in\){-2;0;-4;2}
+)2n + 7 chia hết cho n + 2
=>2n + 7 \(⋮\)n +2
=>2n + 4 +3 \(⋮\)n +2
=>2(n + 2)+ 3 \(⋮\)n + 2
Mà 2(n + 2) \(⋮\)n + 2 nên 3 \(⋮\)n + 2
=> n + 1\(\in\)Ư(3) = {-1;1;-3;3}
n + 2\(\in\) {-1;1;-3;3}
=> n \(\in\){-3;-1;-5;1}
Vậy n \(\in\){-3;-1;-5;1}
2n \(⋮\)n-1
Vì n-1\(⋮\)n-1
=> 2(n-1)\(⋮\)n-1 (1)
=> 2n - 2 \(⋮\) n-1 (2)
Từ (1) và (2) => 2n - (2n - 2 ) \(⋮\)n-1
2n - 2n +2\(⋮\) n-1
2 \(⋮\)n-1
=> n-1\(\inƯ\left(2\right)=\) {-2;-1;1;2}
=> Ta cos bangr sau:
VẬy n\(\in\){-1;0;2;3}
\(_{ }\)