K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2018

Theo đề bài ta có :

\(n^{200}< 5^{300}\)( với n lớn nhất )

\(\left(n^2\right)^{100}< \left(5^3\right)^{100}\)

\(\left(n^2\right)^{100}< 125^{100}\)

\(n^2< 125\)

\(\Rightarrow n^2\in\left\{0;1;2;...;124\right\}\)

mà n lớn nhất \(\Rightarrow n^2=124\)

\(\Rightarrow n=\sqrt{124}\)

7 tháng 10 2018

ta co 5^300=(5^3)^100=125^100

         n^200=(n^2)^100

nen n^2<125 suy ra n=11

18 tháng 9 2016

Ta có: \(n^{200}=\left(n^2\right)^{100}\)

\(5^{300}=\left(5^3\right)^{100}=125^{100}\)

=>\(\left(n^2\right)^{100}< 125^{100}\Rightarrow n^2< 125\)

n là số nguyên lớn nhất thỏa mãn n2<125 <=> n2=121 <=> n=11

4 tháng 9 2016

Ta có:

n200 < 5300

=> (n2)100 < (53)100

=> n2 < 53 = 125

Mà n lớn nhất => n2 lớn nhất => n2 = 121

=> n = 11

4 tháng 9 2016

cám ơn bạn. ^^.

10 tháng 8 2017

\(n^{200}=\left(n^2\right)^{100}\)

\(5^{300}=\left(5^3\right)^{100}\)

\(\Rightarrow n^2=5^3=125\Rightarrow n=\sqrt{125}=5\sqrt{5}\)

18 tháng 12 2016

a.ta có: \(3^{2009}\)

\(9^{1005}\)= \(\left(3^2\right)^{1005}\) =\(3^{2010}\)

*Vì 2010> 2009 =>\(3^{2009}\) < \(3^{2010}\)

Vậy \(3^{2009}\) < \(9^{1005}\).

1 tháng 10 2019

Lũy thừa của một số hữu tỉ

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)