K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
13 tháng 11 2016
Gọi số đó là: ab ( a; b là chữ số ; a khác 0)
Theo bài cho:
ab = a3 + b2
Vì ab < 100 => a3 + b2 < 100 => a3 < 100 => a < 5 (Vì 43 = 64 < 100; 53 = 125 > 100)
a khác 0 nên a = 1 ; 2; 3 hoặc 4
+) Nếu a = 1 thì 1b = 1 + b2 => 10 + b = 1 + b2 => 9 = b2 - b = b(b - 1); b là chữ số : Không có số b nào thỏa mãn
+) Nếu a = 2 thì 2b = 8 + b2 => 20 + b = 8 + b2 => 12 + b = b2 => 12 = b2 - b = b(b - 1) ; 12 = 4.3 => b = 4 (chọn)
+) Nếu a = 3 thì 3b = 27 + b2 => 30 + b = 27 + b2 => 3 = b(b - 1) (Loại)
+) Nếu a = 4 thì 4b = 64 + b2 => 40 + b = 64 + b2 => b = 24 + b2 (Vô lý , vì b2 > b) => Loại
Vậy số đó là 24
Lời giải:
Gọi số cần tìm là $\overline{ab}$ với $a,b$ là số tự nhiên có 1 chữ số, $a>0$.
Theo bài ra ta có:
$a^3+b^2=\overline{ab}=10a+b$
$a(a^2-10)=b(1-b)$
Nếu $b=0$ hoặc $b=1$ thì $a(a^2-10)=0\Rightarrow a=0$ hoặc $a^2=10$ (vô lý)
Nếu $b>1$ thì $a(a^2-10)<0$
$\Rightarrow a^2-10<0\Rightarrow a^2<10<16\Rightarrow a<4$
$\Rightarrow a=1,2,3$.
Nếu $a=1$ thì:
$1+b^2=10+b$
$\Rightarrow b(b-1)=9$ (loại vì không tồn tại 2 số liên tiếp nào nhân với nhau bằng 9).
Nếu $a=2$ thì:
$2^3+b^2=20+b$
$\Rightarrow b^2-b-12=0$
$\Rightarrow b(b-1)=12=4.3\Rightarrow b=4$
Nếu $a=3$ thì:
$3^3+b^2=30+b$
$\Rightarrow b^2-b=3$
$\Rightarrow b(b-1)=3$ (loại vì không tồn tại 2 số liên tiếp nào nhân với nhau bằng 3).
Vậy $a=2; b=4$. Số cần tìm là $24$