K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Ta có: \(x^2-y^2=100.110^{2n}\)

<=> \(\left(x-y\right)\left(x+y\right)=\left(10\right)^2.11^{2n}.10^{2n}\)là số chẵn

=> x - y; x + y cùng chẵn

Đặt: 2a = x - y; 2b = x + y (b>a >0) 

Khi đó: \(2a.2b=5^{2n+2}.11^{2n}.2^{2n+2}\)

<=> \(ab=5^{2n+2}.11^{2n}.2^{2n}\)

=> a là ước nguyên dương của \(5^{2n+2}.11^{2n}.2^{2n}\)

=> a có dạng \(a=5^s.11^t.2^r\) với: \(0\le s\le2n+2;0\le t\le2n;0\le r\le2n\)

Ta có:  s có 2n + 3 cách chọn;  t có 2n +1 cách chọn; r có 2n + 1 cách chọn 

Vì s, t, r độc lập nên a có: (2n + 3)(2n + 1)( 2n +1 ) cách chọn.

Với mỗi cách chọn a có một cách chọn b => có: \(\left(2n+3\right)\left(2n+1\right)^2\) ngiệm (a;b) 

Tuy nhiên chú ý: b > a> 0 và trong các cặp nghiệm (a; b ) trên có một cặp nghiệm thỏa mãn a = b.

Nên số nghiệm (a;b) thỏa mãn  b> a> 0 là \(\frac{\left(2n+3\right)\left(2n+1\right)^2-1}{2}\)

Và với mỗi nghiệm (a;b) thỏa mãn đk : b > a> 0 thì  có 1 cặp nghiệm (x;y)

=> Số nghiệm nguyên của phương trình ban đầu là: \(\frac{\left(2n+3\right)\left(2n+1\right)^2-1}{2}=\frac{\left(2n+2\right)\left(2n+1\right)^2+\left(2n+1\right)^2-1}{2}\)

\(=\left(n+1\right)\left(2n+1\right)^2+2n\left(n+1\right)=\left(n+1\right)\left(4n^2+6n+1\right)\)(1) ( với n nguyên dương )

Nhận xét: \(\left(4n^2+6n+1;n+1\right)=1\)(2)

Chứng minh: Thật vậy: Đặt: \(\left(4n^2+6n+1;n+1\right)=d\)

Khi đó: \(4n^2+6n+1-4\left(n+1\right)^2⋮d\)

=> \(-2n-3⋮d\)

=> \(\left(-2n-3\right)+2\left(n+1\right)⋮d\)

=> \(-1⋮d\)

=> d = 1

Từ (1); (2)  số nghiệm nguyên (x; y) là số chính phương  <=> \(4n^2+6n+1\)và n +1 đồng thời là hai số chính phương với mọi n nguyên dương 

Mà: 

\(4n^2+4n+1< 4n^2+6n+1< 4n^2+8n+4\)với mọi số nguyên dương n

=> \(\left(2n+1\right)^2< 4n^2+6n+1< \left(2n+2\right)^2\)

=>   \(4n^2+6n+1\)không là số chính phương

Vậy nên số ngiệm phương trình không phải là số chính phương.

18 tháng 12 2019

Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath

3 tháng 4 2020

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

5 tháng 4

Gỉa sử ab+1=n2 (n thuộc N)
Cho c=a+b+2n.Ta có:
* ac+1=a(a+b+2n)+1
          =a2+2na+ab+1=a2+2na+n2=(a+n)2
* bc +1=b(a+b+2n)+1=b2+2nb+ab+1
           =b2+2nb+n2=(b+n)2
Vậy ac+1 và bc+1 đều là số chính phương.