K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

Đáp số: Giải sách bài tập Toán 11 | Giải sbt Toán 11

12 tháng 1 2019

Theo đầu bài ta có:

Đề kiểm tra 45 phút Đại số 11 Chương 4 có đáp án (Đề 1)

Chọn C.

19 tháng 6 2019

a) Cấp số nhân vô hạn với công bội q mà |q| < 1 là cấp số nhân lùi vô hạn

b) Ví dụ về cấp số nhân lùi vô hạn có công bội âm:

Giải bài 4 trang 142 sgk Đại Số 11 | Để học tốt Toán 11 Giải bài 4 trang 142 sgk Đại Số 11 | Để học tốt Toán 11

14 tháng 7 2017

Đáp án B

- Cách giải:

Cho cấp số nhân lùi vô hạn u n  có công bội q. Khi đó tổng của cấp số nhân lùi vô hạn đó được tính bởi công thức Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

a: \(S=\dfrac{\dfrac{2}{3}}{\dfrac{5}{4}}=\dfrac{8}{15}\)

b: 1,(6)=5/3

NV
24 tháng 3 2022

\(\dfrac{u_1}{1-q}=2\Rightarrow q=\dfrac{2-u_1}{2}\)

\(u_1+u_1q+u_1q^2=\dfrac{9}{4}\)

\(\Rightarrow u_1+\dfrac{u_1\left(2-u_1\right)}{2}+\dfrac{u_1\left(2-u_1\right)^2}{4}=\dfrac{9}{4}\)

\(\Rightarrow u_1^3-6u_1^2+12u_1-9=0\)

\(\Rightarrow u_1=3\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_1} = 5,\;\;{u_2} = 10,\;\;\;{u_3} = 15,\;\;{u_4} = 20,\;\;\;{u_5} = 25\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{5n}}{{5n - 1}} \)phụ thuộc vào n.

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

b) \({u_1} = 5,\;\;{u_2} = 25,\;\;{u_3} = 125,\;\;\;{u_4} = 625,\;\;\;{u_5} = 3125\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = \frac{{{5^n}}}{{{5^{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = 5 \times {5^{n - 1}}= 5^{n}\).

c) \({u_1} = 1,\;\;\;{u_2} = 2,\;\;\;{u_3} = 6,\;\;\;{u_4} = 24,\;\;\;{u_5} = 120\).

 có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = n\) phụ thuộc vào n, \(\forall n \in {N^*}\).

Suy ra dãy số \(\left( {{u_n}} \right)\) không phải là cấp số nhân.

d) \({u_1} = 1,\;\;{u_2} = 5,\;\;{u_3} = 25,\;\;\;{u_4} = 125,\;\;\;{u_5} = 625\).

Ta có: \(\frac{{{u_n}}}{{{u_{n - 1}}}} = 5,\;\forall n \ge 2\).

Do đó dãy số \(\left( {{u_n}} \right)\) là cấp số nhân với công bội \(q = 5\).

Số hạng tổng quát: \({u_n} = {5^{n - 1}}\).

11 tháng 5 2018

Chọn C

Gọi q là công bội của cấp số. Khi đó ta có

u 1 + u 2 + u 3 + u 4 + u 5 = 11 u 1 + u 5 = 82 11

⇔ u 2 + u 3 + u 4 = 39 11 u 1 + u 5 = 82 11 ⇔ u 1 q + q 2 + q 3 = 39 11 u 1 1 + q 4 = 82 11

Suy ra: 

q 4 + 1 q 3 + q 2 + q = 82 39 ⇔ 39 q 4 − 82 q 3 − 82 q 2 − 82 q + 39 = 0

⇔ ( 3 q − 1 ) ( q − 3 ) ( 13 q 2 + 16 q + 13 ) = 0 ⇔ q = 1 3 , q = 3

q = 1 3 ⇒ u 1 = 81 11 ⇒ u n = 81 11 . 1 3 n − 1

q = 3 ⇒ u 1 = 1 11 ⇒ u n = 3 n − 1 11