K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

Chọn A

Theo đề bài ta có: .

Lại theo tính chất của cấp số cộng có:

Khi đó số hạng tổng quát trong khai triển  x   -   1 x 2 10

Số hạng không chứa x trong khai triển trên ứng với 

Vậy hệ số của số hạng không chứa x trong khai triển trên là 

21 tháng 12 2022

`2^n C_n ^0+2^[n-1] C_n ^1+2^[n-2] +... +C_n ^n=59049`

`<=>(2+1)^n=59049`

`<=>3^n=59049`

`<=>n=10 =>(2x^2+1/[x^3])^10`

Xét số hạng thứ `k+1:`

    `C_10 ^k (2x^2)^[10-k] (1/[x^3])^k ,0 <= k <= 10`

 `=C_10 ^k 2^[10-k] x^[20-5k]`

Số hạng chứa `x_5` xảy ra `<=>20-5k=5<=>k=3`

Với `k=3` thì số hạng cần tìm là: `C_10 ^3 2^[10-3] x^5=15360 x^5`

 

25 tháng 12 2020

undefinedXài cái này gõ bài đi bạn, thề như này hiểu chết liền á :(

23 tháng 12 2021

\(C^n_n+C^{n-1}_n+C^{n-2}_n=37\)

\(\Leftrightarrow1+\dfrac{n!}{\left(n-1\right)!}+\dfrac{n!}{\left(n-2\right)!2!}=37\)

\(\Leftrightarrow1+n+\dfrac{n\left(n-1\right)}{2}=37\)

\(\Rightarrow n=8\)

\(P=\left(2+5x\right)\left(1-\dfrac{x}{2}\right)^8=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{x}{2}\right)^k\right)\)

\(=\left(2+5x\right).\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5x\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\)

\(=2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)+5\)\(\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\)

Số hạng chứa \(x^3\) trong \(2.\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^k\right)\) là \(2C^3_8.\left(-\dfrac{1}{2}\right)^3x^3\)

Số hạng chứa \(x^3\) trong \(5\left(\sum\limits^8_{k=0}.C_8^k.\left(-\dfrac{1}{2}\right)^k.x^{k+1}\right)\) là \(5C^2_8.\left(-\dfrac{1}{2}\right)^2x^3\)

Vậy số hạng chứa x3 trong P là:\(\left[2.C^3_8\left(-\dfrac{1}{2}\right)^3+5C^2_8\left(-\dfrac{1}{2}\right)^2\right]x^3\)

24 tháng 12 2021

cảm ơn ạ

 

NV
11 tháng 4 2021

\(C_2^2+C_3^2+...+C_n^2=C_3^3+C_3^2+C_4^2+...+C_n^2\) (do \(C_2^2=C_3^3=1\))

\(=C_4^3+C_4^2+C_5^2+...+C_n^2=C_5^3+C_5^2+...+C_n^2\)

\(=...=C_n^3+C_n^2=C_{n+1}^3\)

Do đó:

\(2C_{n+1}^3=3A_{n+1}^2\Leftrightarrow\dfrac{2.\left(n+1\right)!}{3!.\left(n-2\right)!}=\dfrac{3.\left(n+1\right)!}{\left(n-1\right)!}\)

\(\Leftrightarrow n-1=9\Rightarrow n=10\)

\(\Rightarrow P=\left(1-x-3x^3\right)^{10}=\sum\limits^{10}_{k=0}C_{10}^k\left(-x-3x^3\right)^k\)

\(=\sum\limits^{10}_{k=0}C_{10}^k\left(-1\right)^k\left(x+3x^3\right)^k=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^kx^i.3^{k-i}.x^{3\left(k-i\right)}\)

\(=\sum\limits^{10}_{k=0}\sum\limits^k_{i=0}C_{10}^kC_k^i\left(-1\right)^k.3^{k-i}.x^{3k-2i}\)

Ta có: \(\left\{{}\begin{matrix}0\le i\le k\le10\\i;k\in N\\3k-2i=4\end{matrix}\right.\) \(\Rightarrow\left(i;k\right)=\left(1;2\right);\left(4;4\right)\)

Hệ số: \(C_{10}^2C_2^1\left(-1\right)^2.3^1+C_{10}^4C_4^4.\left(-1\right)^4.3^0=...\)

11 tháng 4 2021

undefined

\(\Rightarrow he-so:\left[{}\begin{matrix}C^9_{10}C^1_9\left(-3\right)^{10-9}\left(-1\right)=270\\C^{10}_{10}C^4_{10}\left(-3\right)^{10-10}.\left(-1\right)^4=210\end{matrix}\right.\)

22 tháng 7 2019

13 tháng 11 2021

Ta có:

\(2A_n^2=C_{n-1}^2+C_{n-1}^3\) \(\left(n\ge4\right)\)

\(\Rightarrow2\cdot\dfrac{n!}{\left(n-2\right)!}=\dfrac{\left(n-1\right)!}{2!\left(n-1-2\right)!}+\dfrac{\left(n-1\right)!}{3!\left(n-1-3\right)!}\)

\(\Rightarrow2\cdot n\left(n-1\right)=\dfrac{\left(n-1\right)\left(n-2\right)}{4}+\dfrac{\left(n-1\right)\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow2n=\dfrac{n-2}{4}+\dfrac{\left(n-2\right)\left(n-3\right)}{6}\)

\(\Rightarrow n=14\) hoặc \(n=0\left(loại\right)\)

Với n=14 ta có khai triển:

\(\left(x^2-\dfrac{1}{x^2}\right)^{14}=\sum\limits^{14}_{k=0}\cdot C_{14}^k\cdot\left(x^2\right)^{14-k}\cdot\left(\dfrac{1}{x^2}\right)^k\)

                      \(=C_{14}^k\cdot x^{28-4k}\)

Số hạng không chứa x: \(\Rightarrow28-4k=0\Rightarrow k=7\)

Vậy số hạng không chứa x trong khai triển là:

\(C_{14}^7\cdot x^{28-4\cdot7}=C_{14}^7=3432\)