K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2019

Lấy 1 tờ giấy rồi đặt tính ra , xong là sẽ ra số dư ngay :)
~ Hok tốt ~
#JH

Bài của học sinh :                                                                                                          。丁ớ… 。…丫仓u… 。…。…吖’…。

+ Số dư của 3810 khi chia cho 10 .

             \(38^{10}=\left(38^4\right)^2.38^2\)

                       \(=\left(.....6\right)^2.38^2\)

                       \(=\left(.....6\right).38^2\)

                       \(=\left(.....6\right).\left(.....4\right)\)

                       \(=\left(.....4\right)\)

\(\text{Vậy chữ số tận cùng của 3810 là 4 , vì vậy khi chia cho 10 tận cùng là 4.}\)

28 tháng 7 2023

\(38^{10}=\left(39-1\right)^{10}\)

 Ta đều biết rằng biểu thức này sẽ có dạng \(39P+1\) (nếu muốn viết đầy đủ thì phải dùng khai triển Newton) và vì \(13|39\) nên biểu thức trên cũng có thể được viết dưới dạng \(13Q+1\) (với \(Q=3P\)). Do đó \(38^{10}\) chia 13 dư 1.

 Ta làm tương tự: \(38^9=\left(39-1\right)^9=13R-1\) nên lúc này \(38^9\) chia 13 dư 12.

 

28 tháng 7 2023

mik chx học cái đó :<

17 tháng 7 2017

hằng đẳng thức : \(\left(a+b\right)^n=B\left(a\right)+b^n=B\left(b\right)+a^n\)

áp dụng hằng đẳng thức trên ta có 

\(38^{10}=\left(39-1\right)^{10}=B\left(39\right)+\left(-1\right)^{10}=B\left(39\right)+1\)

vì B(39) chia hết cho 13 nên B(39)+1 chia 13 dư 1 
tương tự làm câu còn lại nhé

24 tháng 3 2017

ta có A = 1! + 2! + 3! + ... + 2015!

           = (...0)

16 tháng 9 2016

\(3^{2016}\equiv1^{2016}\)

mà \(1^{2016}\)chia 13 dư 1

nên 3^2016 : 13 dư 1

26 tháng 1 2018

lớp 8 thì chịu

26 tháng 1 2018

xin lỗi bạn nha ,số to quá mk ko chia đc

26 tháng 1 2018

Có : 3^2003 = 3^2001.3^2 = (3^3)^667.9 = 27^667.9 = 27^667.9-9+9=9.(27^667-1)+9

Ta thấy 27^667-1 = 27^667-1^667 chia hết cho 27-1=26

=> 27^667-1 chia hết cho 13

=> 3^2003 chia 13 dư 9

Tk mk nha