Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.chia cho 15 dư 1
b. chia cho 15 dư 14
c.chia hết cho 81
k mình nha
chia 15 dư 1
chia cho 15 dư 14
chia hết cho 81
tích mk đi dù chỉ 1 cái
a) Ta có :
\(7^{8^9}=7^{2^{27}}=7^{4^{13}}.7\)
\(7^4=2401\text{≡}1\left(mod15\right)\)
\(\Rightarrow7^{4^{13}}.7\text{≡}1^{13}.7\left(mod15\right)\)
\(\Leftrightarrow7^{8^9}\text{≡}1.7\text{≡}7\left(mod15\right)\)
Vậy ...
b) Để tớ hỏi cô tớ chút nhé :(
-Dung:để t xem lại cách làm của c câu a) đã,cô t bảo bài đó dài,phải xét tới 9 lần 78 đồng dư với ..(mod15) cơ
ta có : \(13\text{ chia 4 dư 1 nên }13^{16}=4k+1\text{ nên}\)
\(3^{13^{14}}=3^{4k+1}=3.81^k\text{ mà 81 chia 16 dư 1 nên : }3.81^k\text{ chia 16 dư 3}\)
vậy \(3^{13^{16}}\text{ chia 16 dư 3}\)
b.\(20\text{ chia 3 dư 2 nên }20^{21}\text{ chia 3 dư 2 nên : }20^{21}=3k+2\)
\(\Rightarrow4^{20^{21}}=4^{3k+2}=16\times64^k\)
mà \(64^k\text{ chia 21 dư 1 nên }4^{20^{21}}\text{ chia 21 dư 16}\)
a,4420=(45-1)20=4520-20.45+...+12.
Ta thấy rằng tất cả các số hạng đầu đều chia hết cho 15, duy nhất chỉ có 12\(⋮̸\)15
\(\Rightarrow\)4420 chia 15 dư 1