Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: D.
Hàm số y = x 4 - 5 x 2 + 4 xác định trên R.
y' = 4 x 3 - 10x = 2x(2 x 5 - 5);
y' = 0 khi
y'' = 12 x 2 - 10
Vì y''(0) = -10 < 0,
nên hàm số chỉ có một cực đại (tại x = 0)
Cách khác: Vì a > 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có một cực đại
Đáp án: D.
Hàm số y = x 4 - 5 x 2 + 4 xác định trên R.
y' = 4 x 3 - 10x = 2x(2 x 2 - 5);
y' = 0 khi
y'' = 12 x 2 - 10
Vì y''(0) = -10 < 0,
nên hàm số chỉ có một cực đại (tại x = 0)
Cách khác: Vì a > 0 và y' = 0 có ba nghiệm phân biệt nên hàm số y = a x 4 + b x 2 + c có một cực đại
Ta có : y’ = 4x3-4( m+ 1) x= 4x( x2- (m+ 1) ).
Hàm số có điểm cực trị khi và chỉ khi y’ = 0 có nghiệm phân biệt hay m+1> 0 suy ra m> - 1. (*)
Khi đó, ta có:
Do đó O A = B C ⇔ m = 2 m + 1 ⇔ m 2 - 4 m - 4 = 0 ( ∆ ' = 8 ) ⇔ m = 2 ± 2 2 (thỏa mãn (*)).
Vậy m = 2 ± 2 2 .
Chọn A.
Chọn A
Ta có:
Hàm số có 3 điểm cực trị khi và chỉ khi :
y ' có 3 nghiệm phân biệt
⇔ m + 1 > 0 ⇔ m > - 1 ( * )
Khi đó, ta có y ' = 0
(vai trò của B, C trong bài toán là như nhau ) nên ta giả sử
Ta có: O A ( 0 ; m ) ⇒ O A = m ⇒ B C = 2 m + 1
Do đó OA = BC
⇔ m = 2 ± 2 2 ( t h ỏ a m ã n ) ( * )
Vậy m = 2 ± 2 2
Đáp án: A.
Hàm số y = x 4 + ( m 2 - 4) x 2 + 5 có 3 cực trị khi y' = 0 có 3 nghiệm phân biệt, tức là
y' = 4 x 3 + 2( m 2 - 4) = 2x(2 x 2 + m 2 - 4) = 0 có ba nghiệm phân biệt
⇔ 2 x 2 + m 2 - 4 = 0 có hai nghiệm phân biệt khác 0.
⇔ 4 - m 2 > 0 ⇔ -2 < m < 2.
Đáp án: A.
Hàm số y = x 4 + ( m 2 - 4) x 2 + 5 có 3 cực trị khi y' = 0 có 3 nghiệm phân biệt, tức là
y' = 4 x 3 + 2( m 2 - 4) = 2x(2 x 2 + m 2 - 4) = 0 có ba nghiệm phân biệt
⇔ 2 x 2 + m 2 - 4 = 0 có hai nghiệm phân biệt khác 0.
⇔ 4 - m 2 > 0 ⇔ -2 < m < 2.
Đáp án A.
y = x4 + 4x3 TXĐ: D = R
y’ = 4x3 + 12x2 = 0
Lập bảng xét dấu của y’ và suy ra hàm số có 1 cực trị