Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b, mình đã làm ở bài tìm biển số xe máy, KQ 7744.
Câu a thì làm như sau:
Gọi số cần tìm là ab (a,b\(\in\)N, 0<a<10, 0\(\le\)b<10), theo bài ra:
ab.135=m2(m\(\in\)N)<=>(10a+b).32.3.5=m2<=>[9a+(a+b)].32.3.5=m2, vì (3,5)=1 nên 9a+(a+b) phải chia hết cho cả 3 và 5.
- Để 9a+(a+b)=10a+b chia hết cho 5 thì b phải = 5
- Để 9a+(a+b) chia hết cho 3 thì a+b=a+5 phải chia hết cho 3, khi đó a=1,4,7
Thử lại thấy a=1 là được. Vậy số cần tìm là 15
Mấy bạn sai hết rùi ko phải 35 vì 35*135=4725 ko phải số chính phương
ta cần làm thế này:Đặt số chính phương cần tìm là n (9<n<100,...)
theo bài ra ta có n*135=k^2 =))n x 3^3 x 5=k^2 =)) n=3*5*a^2
mà 9<n<100 =)) 0,6<a^2<6,6 vậy a^2={1;4} =))) n={15; 60} vây số cần tìm là 15 và 60
Xét lại ta thấy 15 x 135=2025=45^2 60 x 135=8100=90^2
ai ngang qua cho nhé
khảo đấy nha bạn
https://olm.vn/hoi-dap/detail/57218362971.html
hơi khác 1 tí vì bài bạn 4 chữ số o khác nhau
Gọi số chính phương cần tìm là n2n2
Có:
:n2=100A+bn2=100A+b ( A là số trăm,1≤b≤991≤b≤99)
Theo bài ra ta có 100A là số chính phương
⇒A⇒A là số chính phương
Đặt A=x2A=x2
Có: n2>100x2n2>100x2
⇒n>10x⇒n>10x
⇒n≥10x+1⇒n≥10x+1
⇒n2≥(10x+1)2⇒n2≥(10x+1)2
⇒100x2+b≥100x2+20x+1⇒100x2+b≥100x2+20x+1
⇒b≥20x+1⇒b≥20x+1
Mà b≤99b≤99
⇒20x+1≤99⇒20x+1≤99
⇒x≤4⇒x≤4
Ta có :
n2=100x2+b≤1600+99n2=100x2+b≤1600+99
⇒n2=100x2+b≤1699⇒n2=100x2+b≤1699
Chỉ có 412=1681(tm)412=1681(tm)
Vậy số chính phương lớn nhất phải tìm là 412=1681