K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2017
  • ko có số chính phương nào hết .

k ch mnh nhé

giả sử

số đó là

abbb do  là số chính phương nên

 abbb = n^2( n thuộc N)

abbb = 1000a + 100b + 10b +b = 1000a + 111b

6 tháng 7 2015

Lay 4 chu so thi dong du voi 10000  

5^1994=5^2*(5^4)^498  

5^4=625 dong du 625 mod 10000  

625^2=390625 dong du 625 mod 10000  

=>625^n luon dong du 625 mod 10000  

=>(5^4)^498 dong du 625 mod 10000  

=>(5^2)*(5^4)^498 dong du (5^2)*625 mod 10000  

hay la 5^1994 dong du 15625 mod 10000

 Vay 4 chu so tan cung cua 5^1994 la 5625 

​kết luận chữ số tận cũg có 4 chữ số

25 tháng 12 2017

ngu tất

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

Lời giải:

1.

Gọi số chính phương có tận cùng là $5$ là $a^2$. Khi đó $a$ cũng phải có tận cùng là $5$

Đặt \(a=\overline{A5}\)

\(\Leftrightarrow a^2=(\overline{A5})^2=(10A+5)^2=100A^2+100A+25\)

\(\Rightarrow a^2\) chia $100$ dư $25$ nên $a^2$ có tận cùng là $25$ hay chữ số hàng chục là $2$

--------------------

2.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $6$ và chữ số hàng chục là số chẵn.

Khi đó, $a^2$ có thể có tận cùng là $06,26,46,...,86$ $\rightarrow a^2$ không chia hết cho $4$ (1)

Mà $a^2$ có tận cùng bằng $6$ $\rightarrow a^2$ là scp chẵn, $\rightarrow a$ chẵn, $\rightarrow a.a=a^2$ chia hết cho $4$ (mâu thuẫn với (1))

Do đó không tồn tại số cp có tận cùng bằng $6$ mà chữ số hàng chục chẵn. Hay 1 số cp có tận cùng là 6 thì chữ số hàng chục là lẻ.

AH
Akai Haruma
Giáo viên
30 tháng 6 2019

3.

Giả sử tồn tại số chính phương $a^2$ có tận cùng là $4$ mà chữ số hàng chục lẻ.

Khi đó $a^2$ có thể có tận cùng $14,34,...,94$. Những số trên đều không chia hết cho $4$ nên $a^2$ không chia hết cho $4$ (1)

Mà $a^2$ tận cùng là $4$ nên $a^2$ là scp chẵn. Do đó $a$ chẵn hay $a\vdots 2$

$\rightarrow a^2=a.a\vdots 4$ (mâu thuẫn với (1))

Do đó không tồn tại scp có tận cùng bằng 4 mà chữ số hàng chục lẻ. Hay một số cp có tận cùng là 4 thì chữ số hàng hàng chục là số chẵn.

-----------------

4.

Gọi $a^2$ là scp có tận cùng $n$ chữ số $0$. Khi đó $a$ cũng phải có tận cùng bẳng $0$

Đặt \(a^2=(\overline{A0...0})^2\) ($n$ chữ số 0)

\(=(10^nA)^2=10^{2n}A^2=A^2.10...0\) ($n$ chữ số 0)

Hay $a^2$ có tận cùng là $2n$ chữ số $0$. $2n$ là số chẵn nên $a^2$ có lượng chẵn chữ số 0 tận cùng (đpcm)