Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =>2x^3-4x^2-3x^2+6x+4x-8+a+8 chia hết cho x-2
=>a+8=0
=>a=-8
b: =>2x^3+x^2-x^2-0,5x-0,5x+0,25+m-0,25 chia hết cho 2x+1
=>m-0,25=0
=>m=0,25
Ta thực hiện phép chia 10x2- 7x+ a cho 2x- 3
thì đc 5x+ 4 và dư a+ 12. Muốn đa thức 10x2- 7x+ a chia hết cho đa thức 2x- 3
thì a+ 12 phải =0 suy ra a = -12
Để : \(3x^3+2x^2-7x+a⋮3x-1\)<=> \(a-2=0\)
<=> \(a=2\)
Vậy a = 2
Để \(x^3+3x^2+5x+a⋮x+3\)<=> \(a-66=0\)
<=> \(a=66\)
Vậy a = 66
a: 3x^3+2x^2-7x+a chia hêt cho 3x-1
=>3x^3-x^2+3x^2-x-6x+2+a-2 chia hết cho 3x-1
=>a-2=0
=>a=2
c: =>2x^2-6x+(a+6)x-3a-18+3a+19 chia x-3 dư 4
=>3a+19=4
=>3a=-15
=>a=-5
d: 2x^3-x^2+ax+b chiahêt cho x^2-1
=>2x^3-2x-x^2+1+(a+2)x+b-1 chia hết cho x^2-1
=>a+2=0 và b-1=0
=>a=-2 và b=1
\(a,A=\left(x^2-4xy+4y^2\right)+10\left(x-2y\right)+25+\left(y^2-2y+1\right)+2\\ A=\left(x-2y\right)^2+10\left(x-2y\right)+5+\left(y-1\right)^2+2\\ A=\left(x-2y+5\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=2y-5\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=1\end{matrix}\right.\)
\(b,\Leftrightarrow3x^3+10x^2-5+n=\left(3x+1\right)\cdot a\left(x\right)\)
Thay \(x=-\dfrac{1}{3}\Leftrightarrow3\left(-\dfrac{1}{27}\right)+10\cdot\dfrac{1}{9}-5+n=0\)
\(\Leftrightarrow-\dfrac{1}{9}+\dfrac{10}{9}-5+n=0\\ \Leftrightarrow-4+n=0\Leftrightarrow n=4\)
\(c,\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\\ \Leftrightarrow2n\left(n-2\right)+5\left(n-2\right)+3⋮n-2\\ \Leftrightarrow n-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\\ \Leftrightarrow n\in\left\{-1;1;3;5\right\}\)
Đa thức A và B dấu không rõ ràng. Bạn viết lại để mọi người hỗ trợ bạn tốt hơn.
Ta có: \(3x^3+10x^2-5+n⋮3x+1\)
\(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1-4+n⋮3x+1\)
\(\Leftrightarrow x^2\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow\left(3x+1\right)\left(x^2+3x-1\right)-\left(4-n\right)⋮3x+1\)
mà \(\left(3x+1\right)\left(x^2+3x-1\right)⋮3x+1\)
nên \(-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow-\left(4-n\right)=0\)
\(\Leftrightarrow4-n=0\)
\(\Leftrightarrow n=4\)
Vậy: Để đa thức \(3x^3+10x^2-5+n\) chia hết cho đa thức 3x+1 thì n=4
Vì (10x2-7x+a):(2x-3)=5x+4 dư a+12 nên để 10x2-7x+a chia hết cho 2x-3 thì a+12=0=> a=-12
Đặt tính chia hai đa thức, ta được: \(\left(10x^2-7x+a\right):\left(2x-3\right)=5x+4\) (dư a - -12)
Để đa thức \(10x^2-7x+a\) chia hết cho đa thức \(2x-3\) thì a + 12 = 0 => a = 0 - 12 = -12
Vậy a = -12