Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)
Lời giải:
Vì $p$ là số nguyên tố lớn hơn $5$ nên $p$ không chia hết cho $3$. Do đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ là số tự nhiên; $k\geq 2$.
Nếu $p=3k+1$ thì $2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$ và $2p+1=3(2k+1)>3$ nên $2p+1$ không phải số nguyên tố (trái giả thiết).
Do đó $p=3k+2$.
Khi đó:
$p(p+5)+31=(3k+2)(3k+7)+31=9k^2+27k+45=9(k^2+3k+5)\vdots 9$ nên $p(p+5)+31$ là hợp số (đpcm)
Nếu p=2 thì p+10=2+10=12 là hợp số (loại)
Nếu p=3 thì p+10=3+10=13 là số nguyên tố
p+14=3+14=17 là số nguyên tố (thỏa mãn)
Nếu p>3 thì p có dạng p=3k+1 hoặc p=3k+2 (k thuộc N*)
Với p=3k+1 thì p+14= 3k+1+14= 3k+15= 3(k+5) chia hết cho 3 => p+14 là hợp số (loại)
Với p=3k+2 thì p+10= 3k+2+10= 3k+12= 3(k+4) chia hết cho 3 => p+10 là hợp số (loại)
Vậy p=3
với p=2 thì p+10=12 p+14=16 (loại)
với p=3 thì p+10=13 p+14=17 chọn vì là số nguyên tố
với p>3 thì p có dạng 3k+1 3k+2
với p có dạng 3k+1
=>p+14=3k+1+14=3k+15 chia hết cho 3( loại)
với p có dạng 3k+2
=>p+10=3k+2+10=3k+12 chia hết cho3( loại)
=> p=3
tick cho mình
+ Nếu p = 3 thì \(p^2+14=23\)là số nguyên tố.
+ Nếu p > 3. Vì p là số nguyên tố nên p không chia hết cho 3.
- Nếu p chia 3 dư 1 thì p = 3k + 1 và \(p^2+14=9k^2+6k+15=3\left(3k^2+2k+5\right)\)chia hết cho 3 nên không phải số nguyên tố.
- Nếu p chia 3 dư 2 thì p = 3k + 2 và \(p^2+14=9k^2+6k+24=3\left(3k^2+2k+8\right)\)chia hết cho 3 nên không phải số nguyên tố.
Vậy chỉ có p = 3 thỏa mãn yêu cầu của đề bài.
Nếu p=2 => \(p^2+14\)= 22+14=18( loại )
Nếu p=3=> \(p^2+14\)=32+14=23 ( thỏa mãn )
=> Nếu p>3 => p không chia hết cho 3=>\(\hept{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)(k thuộc N*)
Nếu p= 3k+1 => \(p^2+14\)= (3k+1)2+14=9k2+6k+1+14=9k2+6k+14 chia hết cho 3 ( loại )
Nếu p=3k+2=> \(p^2+14\)= (3k+2)2+14= 9k2+12k+4+14=9k2+12k+18 chia hết cho 3 ( loại )
Vậy p=3
Nếu p = 2
=> p + 3 = 5 (tm)
p + 5 = 7 (tm)
Nếu p > 2 => p = 2k + 1
Khi đó p + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2) \(⋮\)2 => loại
Vậy p = 2 là giá trị cần tìm