Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử n^2 + 2006 = m^2 (m,n la số nguyên)
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên)
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1)
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2)
Từ (1) và (2) suy ra a và b đều là số chẵn
Suy ra a = 2k , b= 2l ( với k,l là số nguyên)
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4)
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)
bạn ấn vào đúng 0 sẽ ra kết quả, mình làm rồi dễ lắm bạn ạ
đùa tí bạn ấn vào dòng chữ xanh này nhé Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Giả sử 28 + 211 + 2n = a2 (a N) thì
2n = a2 – 482 = (a + 48) (a – 48)
2p. 2q = (a + 48) (a – 48) với p, q N ; p + q = n và p > q
a + 48 = 2p 2p 2q = 96 2q (2p-q – 1) = 25.3
a – 48 = 2q
q = 5 và p – q = 2 p = 7
n = 5 + 7 = 12
Thử lại ta có: 28 + 211 + 2n = 802
Giả sử 28 + 211 + 2n = a2 (a N) thì
2n = a2 – 482 = (a + 48) (a – 48)
2p. 2q = (a + 48) (a – 48) với p, q N ; p + q = n và p > q
a + 48 = 2p 2p 2q = 96 2q (2p-q – 1) = 25.3
a – 48 = 2q
q = 5 và p – q = 2 p = 7
n = 5 + 7 = 12
Thử lại ta có: 28 + 211 + 2n = 802
Câu b:Ta có : 2^n +15=2^n + 2.1.3 +3^2
=(2^n +3)^2=(1+3)^2
Suy ra :n=1.Vậy n=1
Đặt n2+1234=m2
=> (m-n)(m+n)=1234=2x617=1x1234
mà m-n và m+n cùng tính chẵn lẻ
=> không tồn tại n