K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

S = 1/9 + 1/45 + 1/105 + 1/189 + 1/297

=> S = 1/2 ( 6/27 + 6/135 + 6/315 + 6/567 + 6/891 )

=> S = 1/2 ( 6/3.9 + 6/9.15 + 6/15.21 + 6/21.27 + 6/27.33 )

=> S = 1/2 ( 1/3 - 1/9 + 1/9 - 1/15 + ... + 1/27 - 1/33 )

=> S = 1/2 ( 1/3 - 1/33 )

=> S = 1/2 . 10/33

=> S = 5/33

4 tháng 5 2019

\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)

\(S=\frac{1}{1.9}+\frac{1}{9.5}+\frac{1}{5.21}+\frac{1}{21.9}+\frac{1}{9.33}\)

\(5S=\frac{5}{1.9}+\frac{5}{9.5}+\frac{5}{5.21}+\frac{5}{21.9}+\frac{5}{9.33}\)

\(5S=1-\frac{1}{9}+\frac{1}{9}-\frac{1}{5}+\frac{1}{5}+\frac{1}{21}+\frac{1}{21}-\frac{1}{9}+\frac{1}{9}-\frac{1}{33}\)

\(5S=1-\frac{1}{33}\)

\(5S=\frac{32}{33}\)

\(S=\frac{32}{33}:5\)

\(S=\frac{32}{165}\)

3 tháng 5 2019

S+..... 

là sao vậy ??

3 tháng 5 2019

S = NHA

6 tháng 6 2019

#)Giải :

\(P=1+\frac{9}{45}+\frac{9}{105}+\frac{9}{189}+...+\frac{9}{29997}\)

\(P=\frac{3}{1.3}+\frac{3}{3.5}+\frac{3}{5.7}+...+\frac{3}{99.101}\)

\(P=\frac{3}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101} \right)\)

\(P=\frac{3}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(P=\frac{3}{2}\left(1-\frac{1}{101}\right)\)

\(P=\frac{3}{2}\times\frac{100}{101}\)

\(P=\frac{150}{101}\)

trả lời 

=150/101 

chúc bn 

hc tốt

2 tháng 7 2020

\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}=\frac{1}{3}\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\right)\)

\(=\frac{1}{3}.\frac{1}{2}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)=\frac{1}{6}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(=\frac{1}{6}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)=\frac{1}{6}\left(1-\frac{1}{11}\right)=\frac{1}{6}.\frac{10}{11}\)

\(=\frac{5}{33}\)

3 tháng 7 2020

Bài làm:

\(S=\frac{1}{9}+\frac{1}{45}+\frac{1}{105}+\frac{1}{189}+\frac{1}{297}\)

\(S=\frac{1}{6}\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}\right)\)

\(S=\frac{1}{6}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right)\)

\(S=\frac{1}{6}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+\frac{11-9}{9.11}\right)\)

\(S=\frac{1}{6}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)\)

\(S=\frac{1}{6}\left(1-\frac{1}{11}\right)\)

\(S=\frac{1}{6}.\frac{10}{11}=\frac{5}{33}\)

Vậy \(S=\frac{5}{33}\)

Xin lỗi bạn Xyz nhé, mk ko có chép bài bạn đâu! với lại mk cx ko k sai bài bn đâu nhé!

31 tháng 7 2019

#)Giải :

\(\frac{1}{15}+\frac{4}{30}+\frac{9}{45}+\frac{16}{60}+...+\frac{81}{135}=\frac{1}{15}+\frac{2}{15}+\frac{3}{15}+...+\frac{9}{15}=\frac{45}{15}=3\)

Dễ ẹc ak :v rút gọn là ra

31 tháng 7 2019

=(\(\frac{1}{15}\)+\(\frac{4}{30}\)+\(\frac{16}{60}\)+\(\frac{64}{120}\))+(\(\frac{9}{45}\)+\(\frac{36}{90}\))+(\(\frac{25}{75}\)+\(\frac{81}{135}\))

=(\(\frac{8}{120}\)+\(\frac{16}{120}\)+\(\frac{32}{120}\)+\(\frac{64}{120}\))+(\(\frac{18}{90}\)+\(\frac{36}{90}\))+\(\frac{14}{15}\).

=1+\(\frac{3}{5}\)+\(\frac{14}{15}\).

=\(\frac{8}{5}\)+\(\frac{14}{15}\).

=\(\frac{15}{38}\)

24 tháng 5 2015

 

\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{18}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)

\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

               \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

               \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

 

 

24 tháng 5 2015

 

\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{30}+\frac{1}{45}+...+\frac{1}{14850}\)

\(\Rightarrow\frac{3}{2}S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{9900}\)

               \(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)

               \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

               \(=1-\frac{1}{100}=\frac{99}{100}\)

Vậy S = \(\frac{99}{100}:\frac{3}{2}\) = \(\frac{33}{50}\)

23 tháng 4 2016

\(\frac{1}{45}+\frac{1}{55}+\frac{1}{66}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)

\(\frac{2}{90}+\frac{2}{110}+\frac{2}{132}+...+\frac{2}{x.\left(x+1\right)}=\frac{1}{9}\)

\(2\left(\frac{1}{90}+\frac{1}{110}+\frac{1}{132}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)

\(2\left(\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{1}{9}\)

\(2\left(\frac{1}{9}-\frac{1}{\left(x+1\right)}\right)=\frac{1}{9}\)

\(\frac{1}{9}-\frac{1}{\left(x+1\right)}=\frac{1}{18}\)

\(\frac{1}{\left(x+1\right)}=\frac{1}{18}\)

\(x=17\)