Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình chính tắc của Elip có dạng
Các đỉnh của hình chữ nhật cơ sở có tọa độ: (a; b) ; (a; -b) ; ( -a; b) và (-a; -b)
Ta có M( 4;3) là một đỉnh của hình chữ nhật cơ sở nên chọn
.
=> phương trình chính tắc của (E) là
Chọn A.
Ta có độ dài trục nhỏ bằng 8 nên 2b = 8 b = 4
Hình chữ nhật cơ sở có chu vi bằng 40 nên 4a + 4b = 40
Mà b = 4 nên a= 6
Phương trình chính tắc của (E): x 2 36 + y 2 16 = 1
Đáp án A
Chọn A
Ta có 2 c = 12 2 a = 10 b 2 = c 2 - a 2 ⇒ c = 6 a = 5 b 2 = 11
Phương trình chính tắc (H) x 2 25 - y 2 11 = 1
a, Phương trình chính tắc của (E) có dạng
\(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1\) với 0<b<a
Ta có A(0;2) \(\in\left(E\right)\)<=>b=2
(E) có tiêu điểm F1\(\left(-\sqrt{5};0\right)\) => c=\(\sqrt{5}\)
Ta có \(a^2=b^2+c^2=4+5=9\)=>a=3
==> (E) \(\dfrac{x^2}{9}+\dfrac{y^2}{4}=1\)
b, 2a = 6; 2b = 4; 2c = \(2\sqrt{5}\)=>\(\dfrac{c}{a}=\dfrac{\sqrt{5}}{3}\)
c, S=4ab=24
Chọn B.
Gọi (H): x 2 a 2 - y 2 b 2 = 1 .
Tọa độ đỉnh của hình chữ nhật cơ sở là A(a; B); B( a; -b); C( -a; b) và D( –a; -b).
Hình chữ nhật cơ sở của (H) có một đỉnh là (2;-3),
suy ra a = 2 b = 3 .
Phương trình chính tắc của (H) là