Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5a+7b}{6a+5b}=\frac{28}{29}\)
\(\Leftrightarrow29\left(5a+7b\right)=28\left(6a+5b\right)\)
\(\Leftrightarrow145a+203b=168a+140b\)
\(\Leftrightarrow63b=23a\)
\(\Leftrightarrow\frac{a}{b}=\frac{63}{23}\)
Mà \(\left(a;b\right)=1\) nên \(a=63;b=23\)
Chúng ta có thể tìm được rất nhiều phân số thỏa mãn.
Tìm một phân số:
\(\frac{2}{5}< \frac{a}{b}< \frac{1}{2}\)
=> \(\frac{2.4}{5.4}< \frac{a}{b}< \frac{1.10}{2.10}\)
=> \(\frac{8}{20}< \frac{a}{b}< \frac{10}{20}\)
=> \(\frac{a}{b}=\frac{9}{20}\)
1. Tìm các số nguyên a, b thỏa mãn điều kiện:
\(\frac{11}{17}<\frac{a}{b}<\frac{23}{29}\) và 8b-9a=31
Theo đề ta có
28/63<a/b<30/63==>a/b=29/63
=>63a=29b=>63a-29b=0
Lại có 5a-2b=3
=>a=87/19
b=189/19
a/b=29/63
Ta có: 5a-2b=3
=> 5a=3+2b
=> \(a=\frac{3+2b}{5}\)
=> \(\frac{a}{b}=\frac{\frac{3+2b}{5}}{b}=\frac{3+2b}{5}\times\frac{1}{b}=\frac{3+2b}{5b}\)
\(\frac{4}{9}<\frac{3+2b}{5b}<\frac{10}{21}\)
\(<=>\frac{140b}{315b}<\frac{63\times\left(3+2b\right)}{315b}<\frac{150b}{315b}\)
\(<=>140b<189+126b<150b\)
\(<=>b=8;9;10;11;12;13\)
<=> b=Thử vào 5a-2b=3 để tìm a nguyên thì b=11 duy nhất thỏa mãn.
Vậy phân số cần tìm là \(\frac{5}{11}\)
tỉ số giữa A và B là
200/520=5/13
Sơ đồ:(bạn tự vẽ)
a:5 phần
b:13 phần
Hiệu số phần bằng nhau là
13-5=8(phần)
Số A là:
184:8x5=115
Số B là:
184+115=299
ĐS: A=115
B=299