K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2021

Ta có: \(0< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}{2020}< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6+3}}}}{2020}\)

\(=\frac{\sqrt{6+\sqrt{6+...+\sqrt{6+3}}}}{2020}=...=\frac{\sqrt{6+3}}{2020}=\frac{3}{2020}\)

Lại có: \(0< \frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}}{2020}< \frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}{2020}\)

\(=\frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6+2}}}}{2020}=...=\frac{\sqrt[3]{6+2}}{2020}=\frac{2}{2020}\)

\(\Rightarrow0+0< \frac{\sqrt{6+\sqrt{6+...+\sqrt{6}}}}{2020}+\frac{\sqrt[3]{6+\sqrt[3]{6+...+\sqrt[3]{6}}}}{2020}< \frac{3}{2020}+\frac{2}{2020}< 1\)

\(\Rightarrow0< A< 1\Rightarrow\left[A\right]=0\)

Vậy \(\left[A\right]=0\)

20 tháng 5 2021

\(\text{Đặt: }\sqrt{6+\sqrt{6+\sqrt{6+....}}}=a\Rightarrow a^2=6+a\Leftrightarrow a^2-a-6=\left(a-3\right)\left(a+2\right)=0\)

thấy ngay a không thể đạt giá trị âm nên 

a=3 thay vào P=0 (vô lí) -> đề sai.

NV
7 tháng 1 2021

\(x=\dfrac{1}{\sqrt{2}}\left(\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}\right)\)

\(=\dfrac{1}{\sqrt{2}}\left(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}\right)=\sqrt{6}\)

\(y=\sqrt{\left(\sqrt{6}-1\right)^2}=\sqrt{6}-1\)

\(\Rightarrow x-y=1\Rightarrow P=1\)

\(B=x-2020-\sqrt{x-2020}+\dfrac{1}{4}+\dfrac{8079}{4}\)

\(B=\left(\sqrt{x-2020}-\dfrac{1}{2}\right)^2+\dfrac{8079}{4}\ge\dfrac{8079}{4}\)

\(B_{min}=\dfrac{8079}{4}\) khi \(x=\dfrac{8081}{4}\)

5 tháng 6 2019

cái chỗ suy ra P e kh hiểu lắm a chỉ e chi tiết với

6 tháng 6 2019

@Thế Vĩ@

\(P=\sqrt{2}.\frac{\sqrt{2020}-\sqrt{2}}{2}=\sqrt{2}.\frac{\sqrt{2}\left(\sqrt{1010}-1\right)}{2}=2.\frac{\sqrt{1010}-1}{2}=\sqrt{1010}-1\)

8 tháng 7 2020

Trả lời 

\(\frac{3\sqrt{2}+2\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}+6}{\sqrt{6}+1}\)

\(=\frac{\sqrt{2}.\left(3+2\right)}{\sqrt{3}+\sqrt{2}}+\frac{6+\sqrt{6}}{\sqrt{6}+1}\)

\(=\frac{5\sqrt{2}}{\sqrt{3}+\sqrt{2}}+\frac{\sqrt{6}.\left(\sqrt{6}+1\right)}{\sqrt{6}+1}\)

\(=\frac{5\sqrt{2}.\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right).\left(\sqrt{3}-\sqrt{2}\right)}+\sqrt{6}\)

\(=\frac{5\sqrt{6}-5.2}{3-2}+\sqrt{6}\)

\(=\frac{5\sqrt{6}-10}{1}+\sqrt{6}\)

\(=5\sqrt{6}-10+\sqrt{6}\)

\(=6\sqrt{6}-10\)

27 tháng 10 2020

B=\(\sqrt{9+2.3\sqrt{6}+6}+\sqrt{9+2.3.2\sqrt{6}+24}=\sqrt{\left(3+\sqrt{6}\right)^2}+\sqrt{\left(3+2\sqrt{6}\right)^2}\)=\(=3+\sqrt{6}+2+2\sqrt{6}=5+3\sqrt{6}\)