Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(n^2-14n-256=a^2\)
\(\Leftrightarrow\left(n^2-14n+49\right)-a^2=305\)
\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)
\(\Leftrightarrow\left(n-7+a\right)\left(n-7-a\right)=305=5\cdot61\)
Đến đây làm nốt đi.
Đặt \(G=n^2-14n-256=a^2\)(là số chính phương)
\(\Leftrightarrow n^2-14n+49-305=a^2\)
\(\Leftrightarrow\left(n-7\right)^2-305=a^2\)
\(\Leftrightarrow\left(n-7\right)^2-a^2=305\)
\(\Leftrightarrow\left(n+a-7\right)\left(n-a-7\right)=305=5.61\)
Mà \(n+a-7\ge n-a-7\)nên \(\hept{\begin{cases}n+a-7=61\\n-a-7=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n+a=68\\n-a=12\end{cases}}\Leftrightarrow n=\frac{68+12}{2}=40\)
Vậy n = 40 thì \(G=n^2-14n-256\)là số chính phương
Ta thấy: \(4n^2+14n+7=\left(n+3\right)\left(4n+2\right)+1\)
Do n là số nguyên dương \(\Rightarrow4n^2+14n+7\)và n+3 nguyên tố cùng nhau
\(\Rightarrow\left(n+3\right)\left(4n^2+14n+7\right)\)là 1 SCP thì n+3 và \(4n^2+14n+7\)là 1 số chính phương
Do n nguyên dương \(\Rightarrow\left(2n+3\right)^2\le4n^2+14n+7< \left(2n+4\right)^2\)\(\Rightarrow4n^2+14n+7=\left(2n+3\right)^2\Leftrightarrow n=1\)khi đó n+3=4 là 1 scp
Thử lại với n=1 \(\left(n+3\right)\left(4n^2+14n+7\right)=100\left(tm\right)\)
Vậy n=1
\(n^3+100=n^2.\left(n+10\right)-10n^2+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100n+100\)
\(=n^2.\left(n+10\right)-10n.\left(n+10\right)+100.\left(n+10\right)-900\)
\(=\left(n+10\right).\left(n^2-10n+100\right)-900\)
Để n3+100 chia hết cho n+10 => -900 chia hết cho n+10 => n+10 thuộc Ư(900)
Vì n lớn nhất => n+10 lớn nhất => n+10=900 => n=890
Vậy n=890
Xét a là một số tự nhiên bất kỳ. Dễ thấy, nếu a chia hết cho 3 => a3 chia hết cho 9 (1)
Xét: \(a\equiv1\left(mod9\right)\Rightarrow a^3\equiv1\left(mod9\right)\)(2)
\(a\equiv2\left(mod9\right)\Rightarrow a^3\equiv8\left(mod9\right)\)(3)
\(a\equiv4\left(mod9\right)\Rightarrow a^3\equiv64\equiv1\left(mod9\right)\)(4)
\(a\equiv5\left(mod9\right)\Rightarrow a^3\equiv125\equiv8\left(mod9\right)\)(5)
\(a\equiv7\left(mod9\right)\Rightarrow a^3\equiv343\equiv1\left(mod9\right)\)(6)
\(a\equiv8\left(mod9\right)\Rightarrow a^3\equiv512\equiv8\left(mod9\right)\)(7)
Từ (1),(2),(3),(4),(5),(6),(7) => lập phương của 1 số nguyên bất kỳ khi chia cho 9 có số dư là 0,1,8
Dễ thấy: để a3+b3+c3 chia hết cho 9 => 1 trong 3 số a,b,c hoặc cả 3 số a,b,c phải chia hết cho 3 =>
=> abc chia hết cho 3. Vậy a3+b3+c3 chia hết cho 9 thì abc chia hết cho 3
Đặt n^2 - 14n - 256 = x^2 với x là số tự nhiên
--> n^2 - 2.n.7 + 49 - 49 - 256 = x^2
-> (n - 7)^2 - 305 = x^2 --> (n - 7)^2 - x^2 = 305
-> (n - 7 + x)(n - 7 - x) = 305 = 1.305 (1)
= 61.5 (2)
có 2 trường hợp :
Nếu n - 7 + x = 305 và n - 7 - x = 1 --> n = 160
Nếu n - 7 + x = 61 và n - 7 - x = 5 -> n = 40
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
`k^2-k+10`
`=(k-1/2)^2+9,75>9`
`k^2-k+10` là số chính phương nên đặt
`k^2-k+10=a^2(a>3,a in N)`
`<=>4k^2-4k+40=4a^2`
`<=>(2k-1)^2+39=4a^2`
`<=>(2k-1-2a)(2k-1+2a)=-39`
`=>2k-2a-1,2k+2a-1 in Ư(39)={+-1,+-3,+-13,+-39}`
`2k+2a>6`
`=>2k+2a-1> 5`
`=>2k+2a-1=39,2k-2a-1=-1`
`=>2k+2a=40,2k-2a=0`
`=>a=k,4k=40`
`=>k=10`
Vậy `k=10` thì `k^2-k+10` là SCP
`+)2k+2a-1=13,2k-2a-1=-3`
`=>2k+2a=14,2k-2a=-2`
`=>k+a=7,k-a=-1`
`=>k=3`
Vậy `k=3` hoặc `k=10` thì ..........