K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2019

a)4n2-3n-1 chia hết cho 4n-1

<=>4n2-n-2n-1 chia hết cho 4n-1

<=>n(4n-1)-(2n+1) chia hết cho 4n-1

<=>2n+1 chia hết cho 4n-1

<=>2(2n+1) chia hết cho 4n-1

<=>4n-1+3 chia hết cho 4n-1

<=>3 chia hết cho 4n-1

=>4n-1 thuộc Ư(3)

=>Ư(3)={-1;1;-3;3}

Ta có bảng sau:

4n-1-11-33
n01/2-1/21
KLtmloạiloạitm

Vậy n thuộc {0;1}

b)4n2-3n-1 chia hết cho n-1

<=>4n2-4n+n-1 chia hết cho n-1

<=>4n(n-1)+n-1 chia hết cho n-1

<=>(4n+1)(n-1) chia hết cho n-1

<=>n thuộc N với mọi gtrị

P/s: "chia hết cho" thì viết kí hiệu vô

Is that T :))

15 tháng 8 2018

a.\(2n^2-3n+1=2n\times\left(n-1\right)-\left(n-1\right)=\left(2n-1\right)\times\left(n-1\right)\Rightarrow2n-1⋮n-1\)

\(\Rightarrow2\left(n-1\right)+1⋮n-1\Rightarrow1⋮n-1\Rightarrow n-1\inƯ\left(1\right)=\left\{1\right\}\Rightarrow n=2\)

b.Tách tương tự nha

15 tháng 8 2018

\(2n^2-3n+1=\left(2n^2-2n\right)-n+1=2n\left(n-1\right)-n+1\)\(\Rightarrow-n+1⋮n-1\Rightarrow-\left(n-1\right)⋮n-1\)

vậy với mọi x thuộc N đều t/m

b) tương tự nha

10 tháng 9 2017

Cái này là j

10 tháng 9 2017

anh dz-À mà ko dz đâu .-. xem giúp em đi

25 tháng 10 2017

} \leq \sqrt{27}.\frac{(\frac{x}{3}+\frac{x}{3}+\dfrac{x}{3}+2r-x)^{2}}{16}= = \sqrt{27}.\frac{r^2}{4}$  chinh latex

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2-n^3+2\)

\(=5n^2+5n⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=\left(6n^2+30n+n+5\right)-\left(6n^2-3n+10n-5\right)\)

\(=6n^2+31n+5-6n^2-7n+5\)

\(=24n+10⋮2\)

10 tháng 3 2017

a) Ta có

\(\left\{{}\begin{matrix}3n+1⋮2n+3\\2n+3⋮2n+3\end{matrix}\right.\)

=> \(\left\{{}\begin{matrix}6n+2⋮2n+3\\6n+9⋮2n+3\end{matrix}\right.\)

=> 7\(⋮\) 2n + 3

Do n \(\in\) Z nên 2n + 3 \(\in\) Z

=> 2n + 3 \(\in\) Ư(7) ; 2n + 3 \(⋮̸\) 2

Ta có bảng

n 2n + 3 So với điều kiện n\(\in\) Z
-1 1 Thỏa mãn
2 7 Thỏa mãn
-2 -1 Thỏa mãn
-5 -7 Thỏa mãn

Vậy n \(\in\) {-1;2;-2;5} là giá trị cần tìm

14 tháng 12 2017

1. A = \(\dfrac{3n-7}{n-1}=\dfrac{3n-3}{n-1}+\dfrac{-7}{n-1}=3+\dfrac{-7}{n-1}\)

Tại giá trị \(A\notin Z,3\in Z\)\(\Rightarrow\dfrac{-7}{n-1}\in Z\)\(\Rightarrow n-1\inƯ\left(-7\right)\) với \(x\ne1\) (mẫu sẽ có giá trị là 0 nếu x = 1)

Tại \(n-1=7\)\(\Leftrightarrow n=7+1=8\)

Tại \(n-1=-7\Leftrightarrow n=-7+1=-6\)

Tại \(n-1=1\Leftrightarrow n=1+1=2\)

Tại \(n-1=-1\Leftrightarrow n=-1+1=0\)

14 tháng 12 2017

2. B = \(\dfrac{4n+1}{2n-3}=\dfrac{4n+6}{2n-3}+\dfrac{-5}{2n-3}=2+\dfrac{-5}{2n-3}\)

Tại giá trị \(B\in Z,2\in Z\)\(\Rightarrow\dfrac{-5}{2n-3}\in Z\)\(\Rightarrow2n-3\inƯ\left(-5\right)\) với \(x\ne\dfrac{3}{2}\)

Tại \(2n-3=5\Leftrightarrow2n=8\Leftrightarrow n=4\)

Tại \(2n-3=-5\Leftrightarrow2n=-2\Leftrightarrow n=-1\)

Tại \(2n-3=1\Leftrightarrow2n=4\Leftrightarrow n=2\)

Tại \(2n-3=-1\Leftrightarrow2n=2\Leftrightarrow n=1\)

a: \(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+2n^2+3n^2+6n-n-2+n^3+2\)

\(=5n^2+5n=5\left(n^2+n\right)⋮5\)

b: \(\left(6n+1\right)\left(n+5\right)-\left(3n+5\right)\left(2n-1\right)\)

\(=6n^2+30n+n+5-6n^2+3n-10n+5\)

\(=24n+10⋮2\)

d: \(=\left(n+1\right)\left(n^2+2n\right)\)

\(=n\left(n+1\right)\left(n+2\right)⋮6\)