Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{x}+\sqrt{y}-1\)
\(\Leftrightarrow x+y+3=x+y+1+2\sqrt{xy}-2\sqrt{x}-2\sqrt{y}\)
\(\Leftrightarrow\sqrt{y}+1=\sqrt{x}\left(\sqrt{y}-1\right)\)
- Với \(y=1\) ko phải là nghiệm
- Với \(y>1\) , do vai trò của x và y hoàn toàn như nhau, ko mất tính tổng quát, giả sử \(x\le y\)
+ Với \(x=\left\{1;2;3\right\}\) ko thỏa mãn
+ Với \(x\ge4\Rightarrow\sqrt{y}+1=\sqrt{x}\left(\sqrt{y}-1\right)\ge2\left(\sqrt{y}-1\right)\)
\(\Leftrightarrow\sqrt{y}\le3\Rightarrow y\le9\Rightarrow4\le y\le9\)
Lần lượt thử \(y\) từ 4 đến 9 ta được các cặp nghiệm của pt là \(\left(x;y\right)=\left(4;9\right);\left(9;4\right)\)
Dùng thẳng cô si vào VT luôn cho nhanh :v!
ĐK: \(x,y,z>0\)
Ta có: \(VP=\frac{1}{2}\left(y+3\right)=\frac{y+3}{2}\)
Mặt khác theo cô si,ta có
\(VT\le\frac{1+x}{2}+\frac{1+y-z}{2}+\frac{1+z-x}{2}\)\(=\frac{y+3}{2}=VP\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=1\\y-z=1\\z-x=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y-z=1\\z-1=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\z=2\\y-2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=2\end{cases}}\)
Vậy ...
Quá nhanh quá ngu hiểm :v.Lâu lắm mới nghĩ ra được cách thế này.Nãy ngồi bình phương suốt mà làm hoài không ra.
\(\sqrt{x+3\sqrt{3}}=\sqrt{y}+\sqrt{z}\)
\(\Leftrightarrow3\sqrt{3}-2\sqrt{yz}=y+z-x\)
Ta có VP là số nguyên nên VT cũng phải là số nguyên
Giả sử \(yz=a^2\) thì VT không phải số nguyên
Nên yz không phải số chính phương.
Nên để VT là số nguyên thì chỉ có thể là O
\(\Rightarrow3\sqrt{3}=2\sqrt{yz}\)
\(\Rightarrow yz=\frac{27}{4}\) loại vì yz là số nguyên dương
Vậy PT vô nghiệm
Đặt \(\sqrt{x};\sqrt{y};\sqrt{z}\rightarrow a,b,c\), ta có : \(a+b+c=1\)
Tìm min của \(A=\frac{ab}{\sqrt{5a^2+32ab+12b^2}}+\frac{bc}{\sqrt{5b^2+32bc+12c^2}}+\frac{ca}{\sqrt{5c^2+32ca+12a^2}}\)
đến đây thấy giống giống bài bất của HN năm nào ấy nhỉ ?
Mong các bạn ủng hộ cho kênh youtube của mình nha !!
Tên youtube:P Music
Link:https://www.youtube.com/channel/UCs0JKZKs4zoDYqqtAmtiBBA?view_as=subscriber
Nhóm của mình gồm có:
Hậu Trần YTVN
Vanh_GoG_VN
M.Ichibi
P Music(là mình)
Mong các bạn ủng hộ nha !!
\(\Leftrightarrow x+y+3+2\sqrt{x+y+3}+1=x+2\sqrt{xy}+y\)
\(\Leftrightarrow\sqrt{x+y+3}=\sqrt{xy}-2\Leftrightarrow x+y+3=xy-4\sqrt{xy}+4\)
\(\Leftrightarrow\sqrt{xy}=\frac{xy-x-y+1}{4}\)
Nếu xy không là số chính phương thì VT là số vô tỉ còn VP là số hữu tỉ (vô lý)
Vậy \(xy=k^2\Rightarrow\sqrt{xy}=k\)
Ta có : \(x+y+3=xy-4\sqrt{xy}+4\Leftrightarrow x+y+2\sqrt{xy}=xy-2\sqrt{2xy}+1\)
\(\Leftrightarrow\left(\sqrt{x}+\sqrt{y}\right)^2=\left(\sqrt{xy}+1\right)^2\)
\(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-1\)(*)
\(\Leftrightarrow\sqrt{y}=k-1-\sqrt{x}\Leftrightarrow y=\left(k-1\right)^2-2\left(k-1\right)\sqrt{x}+x\)
\(\Leftrightarrow\sqrt{x}=\frac{\left(k-1\right)^2+x-y}{2\left(k-1\right)}\)( vì .....k>2)
Nếu x không là số chính phương thì VT là số vô tỉ, VP là hữu tỉ(vô lý)
Vậy x là số chính phương , tương tự y là số chính phương.
Đặt \(x=a^2;y=b^2\), từ (*) \(a+b=ab+1\Leftrightarrow\left(a-1\right)\left(b-1\right)=2\)
Ta tìm được (a;b)=(2;3);(3;2)=> (x;y)=(4;9);(9;4)