Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2 :
a, \(x^2-4x+4+1=\left(x-2\right)^2+1\ge1\)
Dấu ''='' xảy ra khi x = 2
b, Ta có \(\left(x+1\right)^2+10\ge10\Rightarrow\dfrac{-100}{\left(x+1\right)^2+10}\ge-\dfrac{100}{10}=-10\)
Dấu ''='' xảy ra khi x = -1
Bài 1 :
a, Ta có \(A\left(x\right)=x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
b, \(B\left(x\right)=x^2\left(2x+1\right)+\left(2x+1\right)=\left(x^2+1>0\right)\left(2x+1\right)=0\Leftrightarrow x=-\dfrac{1}{2}\)
c, \(C\left(x\right)=\left|2x-3\right|=\dfrac{1}{3}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{1}{3}+3=\dfrac{10}{3}\\2x=-\dfrac{1}{3}+3=\dfrac{8}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
b: 1/2x-4=0
=>1/2x=4
hay x=8
a: x+7=0
=>x=-7
e: 4x2-81=0
=>(2x-9)(2x+9)=0
=>x=9/2 hoặc x=-9/2
g: x2-9x=0
=>x(x-9)=0
=>x=0 hoặc x=9
a: x+7=0
nên x=-7
b: x-4=0
nên x=4
c: -8x+20=0
=>-8x=-20
hay x=5/2
d: x2-100=0
=>(x-10)(x+10)=0
=>x=10 hoặc x=-10
a) Đặt A(x)=0
\(\Leftrightarrow4x-4+3x-5=0\)
\(\Leftrightarrow7x=9\)
hay \(x=\dfrac{9}{7}\)
b) Đặt B(x)=0
\(\Leftrightarrow-1\dfrac{1}{3}x^2+x=0\)
\(\Leftrightarrow x\left(-\dfrac{4}{3}x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\-\dfrac{4}{3}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\)
Dùng sai mục đích dấu nha em, mình phải dùng ngoặc vuông chứ không phải nhọn nha!
a) -Thay x=-1 vào đa thức P(x)=x2+3x+2, ta được:
P(-1)=(-1)2+3.(-1)+2=1-3+2=0.
-Vậy x=-1 là 1 nghiệm của đa thức P(x).
b) Q(x)=0
⇒2x-1=0
⇒x=1/2
a: P(-1)=(-1)^2+3*(-1)+2=0
=>x=-1 là nghiệm của P(x)
b: Q(x)=0
=>2x-1=0
=>2x=1
=>x=1/2
a/ Đặt f (x) = \(\left(4x-8\right)\left(\frac{1}{2}-x\right)\)
Khi f (x) = 0
=> \(\left(4x-8\right)\left(\frac{1}{2}-x\right)=0\)
=> \(\orbr{\begin{cases}4x-8=0\\\frac{1}{2}-x=0\end{cases}}\)=> \(\orbr{\begin{cases}4x=8\\x=\frac{1}{2}\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}\)
Vậy f (x) có 2 nghiệm là: x1 = 2; x2 = \(\frac{1}{2}\)
b/ Đặt \(g\left(x\right)=2x^2-18\)
Khi g (x) = 0
=> \(2x^2-18=0\)
=> \(2x^2=18\)
=> \(x^2=9\)
=> \(x=\pm\sqrt{9}\)
Vậy đa thức có 2 nghiệm: x1 = \(\sqrt{9}\); x2 = \(-\sqrt{9}\)
a. Ta có x2 - 4 = 0
=> x2 = 4
=> x = 2 hoặc x = -2
b. Ta có (x+3)(2x-1)
=>\(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy...
a,f(x)=x2-4
f(x) = 0
x2 - 4 = 0
x2 = 0 + 4
x2 = 4
=> x = 2
=> x = 2 là nghiệm của đa thức f(x)
a,x=2 là nghiệm của đa thức trên
b,x=1 là nghiệm của đa thức trên