\(x^3y^3-4xy^3+y^2+x^2-2y-3=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2020

ngu như chó

mày lại thích đi gây sự nữa à Vũ Lan Anh

4 tháng 5 2018

\(PT\Leftrightarrow\left(x+y\right)\left(x+3y\right)-2\left(x+y\right)-5=0\)

\(\Leftrightarrow\left(x+y\right)\left(x+3y-2\right)=5\)

=> phương trình ước số

20 tháng 1 2019

\(x^2+y^2=2x^2y^2\)

\(\Rightarrow\frac{x^2+y^2}{x^2y^2}=2\)

\(\Rightarrow\frac{1}{x^2}+\frac{1}{y^2}=2\left(1\right)\)

Do x,y bình đẳng như nhau,giả sử \(x\ge y\)

\(\Rightarrow x^2\ge y^2\)

Với x<1 thì VT của (1) âm mà vế phải dương.(Loại)

Với x=1 thì thỏa mãn

Với x>1 thì dễ thấy KTM

Vậy....

x có khác y không bạn

17 tháng 6 2019

từ trên suy ra x khác y nhé

10 tháng 3 2018

PT thứ hai của hệ tương đương với:

\(xy\left(x^2+y^2\right)+2=x^2+y^2+2xy\)

\(\Leftrightarrow\left(xy-1\right)\left(x^2+y^2-2\right)=0\)

+) TH1: xy = 1 thay vào PT thứ nhất của hệ đã cho được:

\(5x-4y+3y^3-2\left(x+y\right)=0\)

\(\Leftrightarrow y^3-2y+x=0\)

\(\Leftrightarrow y^4-2y^2+1=0\)

\(\Leftrightarrow y=\pm1\Rightarrow x=\pm1\)

TH2: x2 + y2 = 2, thay vào PT thứ nhất của hệ đã cho được:

\(5x^2y-4xy^2+3y^2-\left(x^2-y^2\right)\left(x+y\right)=0\)

\(\Leftrightarrow2y^2+4x^2y-5xy^2-x^3=0\)

\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)

\(\Leftrightarrow\left(y-x\right)^2\left(2xy-x\right)=0\)

Với: x = y tìm đc 2 nghiệm: (x, y) = (1; 1); ( \(\pm\)1)

Với: x = 2y thay vào x2 + y2 = 2, ta có: \(y=\pm\sqrt{\frac{2}{5}}\Rightarrow x=\pm2\sqrt{\frac{2}{5}}\)

Vậy HPT đã cho có 4 nghiệm: \(\left(x,y\right)=\left(1;1\right);\left(\pm1\right);\left(2\sqrt{\frac{2}{5}};\sqrt{\frac{2}{5}}\right);\left(-2\sqrt{\frac{2}{5}};-\sqrt{\frac{2}{5}}\right)\)

26 tháng 8 2020

Ta có: \(x^2y^2+x^2+y^2+4xy=73\)

<=>  \(\left(x^2y^2+4xy+4\right)+x^2+y^2=77\)

<=> \(\left(xy+2\right)^2+x^2=77-y^2\) (1)

Do \(\left(xy+2\right)^2+x^2\ge0\) => \(77-y^2\ge\)0 => \(y^2\le77\)

Do y nguyên và y2 là số chính phương => y2 \(\in\){0; 1; 4; 9; 16; 25; 36; 49; 64}

=> \(y\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7;\pm8\right\}\)

thay y vào pt (1) ... (tự làm)

Hoặc C2:

\(x^2y^2+x^2+y^2+4xy=73\)

<=> \(\left(x^2y^2+2xy+1\right)+\left(x^2+2xy+y^2\right)=74\)

<=> \(\left(xy+1\right)^2+\left(x+y\right)^2=74=5^2+7^2\)

Xét các TH xảy ra: 

+) \(\hept{\begin{cases}xy+1=5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-5\\x+y=-7\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=7\\x+y=-5\end{cases}}\)

+) \(\hept{\begin{cases}xy+1=-7\\x+y=-5\end{cases}}\)

(Tự tính)