Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy: \(10z⋮3\Rightarrow z=3k\left(k\in Z\right)\)
\(\Rightarrow6x+15y+30k=3\)
\(\Leftrightarrow2x+5y+10k=1\)
\(\Leftrightarrow2x+5y=1-10k\)
\(\Rightarrow x=\dfrac{1-10k-5y}{2}=-5k-2y+\dfrac{1-y}{2}\)
Đặt \(t=\dfrac{1-y}{2}\left(t\in Z\right)\)
Ta có: y=1-2t;
x=5t-5k-2;
z=3k.
Pt có nghiệm là (1-2t;5t-5k-2;3k)
Tìm nghiệm nguyên dương nhỏ nhất của pt: x²-15y²=1 đây nha giúp mk với
100 chia 9 dư 1 => 8x+10z chia 9 dư 1,chẵn (vì 9y chia hết cho 9)(1)
mà x+y+z>11
=> 8x+8y+8z>88
=> y+2z<12=> z<6=>x+y<5(2)
tương tự:
9x+9y+9z<99
=> z-x<1
=> z<1+x(3)
để thoả mãn cả (1) (2) và (3) thì:
x=4,y=2,z=5
x=3,y=z=4
x=2,y=6,z=3
x=1,y=8,z=2
x=9,y=2,z=1
\(\left(a^3+b\right)\left(a+b^3\right)\ge\left(a^2+b^2\right)^2\Rightarrow\left\{{}\begin{matrix}\frac{1}{a^3+b}\le\frac{a+b^3}{\left(a^2+b^2\right)^2}\\\frac{1}{a+b^3}\le\frac{a^3+b}{\left(a^2+b^2\right)^2}\end{matrix}\right.\)
\(\Rightarrow P\le\left(a+b\right)\left(\frac{a+b+a^3+b^3}{\left(a^2+b^2\right)^2}\right)-\frac{1}{ab}=\frac{\left(a+b\right)^2\left(a^2+b^2-ab+1\right)}{\left(a^2+b^2\right)^2}-\frac{1}{ab}\)
\(P\le\frac{\left(a+b\right)^2\left(a^2+b^2+1-ab\right)}{\frac{\left(a+b\right)^2}{2}.\left(a^2+b^2\right)}-\frac{1}{ab}=2+\frac{2-2ab}{a^2+b^2}-\frac{1}{ab}\)
\(\Rightarrow P\le2+\frac{2-2ab}{2ab}-\frac{1}{ab}=1\)
Dấu "=" xảy ra khi \(a=b=1\)
\(12x^2+26xy+15y^2=4617\Leftrightarrow11\left(x+y\right)^2+\left(x+2y\right)^2=4617\)
\(11\left(x+y\right)^2⋮11\) và \(4617\) chia 11 dư 8
\(\Rightarrow\left(x+2y\right)^2\) chia 11 dư 8 (vô lý)
Vậy pt ko có nghiệm nguyên
\(x^6+\left(y^6+15y^4+75y^2+125\right)+z^3-3x^2y^2z-15x^2z=0\)
\(\Leftrightarrow x^6+\left(y^2+5\right)^3+z^3=3x^2\left(y^2+5\right)z\)
Ta có:
\(x^6+\left(y^2+5\right)^3+z^3\ge3\sqrt[3]{x^6\left(y^2+5\right)^3z^3}=3x^2\left(y^2+5\right)z\)
Đẳng thức xảy ra khi và chỉ khi:
\(x^2=y^2+5=z\)
Từ \(x^2=y^2+5\Rightarrow\left(x-y\right)\left(x+y\right)=5\)
\(\Rightarrow\left(x;y\right)=\left(3;2\right)\Rightarrow z=9\)
Vậy có đúng 1 bộ số nguyên dương thỏa mãn pt:
\(\left(x;y;z\right)=\left(3;2;9\right)\)
3xy + x + 15y - 44 = 0
<=> x(3y + 1) = 44 - 15y
<=> x = \(\frac{44-15y}{3y+1}=\:-5+\frac{49}{3y+1}\)
Để x nguyên dương thì trước tiên 3y + 1 phải là ước nguyên dương của 49 hay
(3y + 1) = (1; 7; 49)
<=> y = (0; 2; 16)
Chỉ có y = 2, x = 2 là thỏa đề bài