Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(\left(x+3\right)\left(y+4\right)=3xy\)
\(\Leftrightarrow xy+4x+3y+12-3xy=0\)
\(\Leftrightarrow\left(4x-2xy\right)+\left(6-3y\right)=6\)
\(\Leftrightarrow2x\left(2-y\right)+3\left(2-y\right)=6\)
\(\Leftrightarrow\left(2x+3\right)\left(2-y\right)=6=6.1=\left(-6\right).\left(-1\right)=2.3=\left(-2\right).\left(-3\right)\)
Mà ta thấy \(2x+3\) lẻ với mọi x nguyên nên ta xét các TH sau:
+ \(\hept{\begin{cases}2x+3=1\\2-y=6\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=-4\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=-1\\2-y=-6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=3\\2-y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
+ \(\hept{\begin{cases}2x+3=-3\\2-y=-2\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=4\end{cases}}\)
Vậy ta có 4 cặp số (x;y) thỏa mãn: ...
Phá tung ra thoi ạ
\(\Leftrightarrow xy+3y+4x+12=3xy\)
\(\Leftrightarrow4x-2xy-6+3y=-18\)
\(\Leftrightarrow2x\left(2-y\right)-3\left(2-y\right)=-18\)
\(\Leftrightarrow\left(2x-3\right)\left(2-y\right)=-18\)
~~ Lập bảng xét ước là xong :v
Δ=(2m-6)^2-4(m^2+3)
=4m^2-24m+36-4m^2-12=-24m+24
Để phương trình có hai nghiệm phân biệt thì -24m+24>0
=>m<1
x1^2+x2^2=36
=>(x1+x2)^2-2x1x2=36
=>(2m-6)^2-2(m^2+3)=36
=>4m^2-24m+36-2m^2-6-36=0
=>2m^2-24m-6=0
=>m^2-12m-3=0
=>\(m=6-\sqrt{39}\)
Đề bài không chính xác, pt này không giải được
Pt hợp lý cần có dạng:
\(\dfrac{2x}{3x^2-5x+2}+\dfrac{13x}{3x^2+x+2}=...\)
ỷhđfgdg
x=7
y=3 bạn nhé
k cho mình đi