K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 11 2019

1. x+y=xy

=> x-xy+y=0

=> x(1-y)+y=0

=> x(1-y)+y -1 =-1

=> x(1-y)- (1-y) =-1=> (1-y)(x-1)=-1

*    1-y=-1 => y=2

      x-1=1=> x=2

*     1-y =1 => y=0

       x-1=-1 => x=0

12 tháng 2 2020

We have equation \(x+y=xy\)

\(\Rightarrow xy-x-y=0\)

\(\Rightarrow x\left(y-1\right)-\left(y-1\right)=1\)

\(\Rightarrow\left(x-1\right)\left(y-1\right)=1=\left(-1\right).\left(-1\right)=1.1\)

So equation has two value \(\left(2;2\right),\left(0;0\right)\)

12 tháng 2 2020

We have \(p\left(x+y\right)=xy\)

\(\Leftrightarrow xy-px-py=0\)

\(\Leftrightarrow xy-px-py+p^2=p^2\)

\(\Leftrightarrow x\left(y-p\right)-p\left(y-p\right)=p^2\)

\(\Leftrightarrow\left(x-p\right)\left(y-p\right)=p^2\)

But p is prime so \(Ư\left(p^2\right)=\left\{1;p;p^2\right\}\)

\(\Rightarrow\left(x-p\right)\left(y-p\right)=1.p^2=p.p=p^2.1=\left(-p\right).\left(-p\right)\)

\(=\left(-1\right).\left(-p^2\right)=\left(-p^2\right).\left(-1\right)\)

So equation has values \(S=\left(p+1;p^2+p\right);\left(2p;2p\right);\left(p^2+p;p+1\right);\left(0;0\right)\)

\(;\left(p-1;p-p^2\right);\left(p-p^2;p-1\right)\)

DD
26 tháng 8 2021

\(x^2-2y^2-xy+2x-y-2=0\)

\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)

\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)

Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).

Ta có bảng giá trị: 

x+y+1-3-113
x-2y+1-1-331
x-10/3 (l)-8/3 (l)2/3 (l)4/3 (l)
y    

Vậy phương trình đã cho không có nghiệm nguyên.