Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử \(1\le x\le y\le z\) Khi đó
phương trình đã cho \(\Leftrightarrow xyz=x+y+z\le3z\Rightarrow x.y\le3\) Vì x,y,z thuộc Z+ \(\Rightarrow x.y\in\left\{1;2;3\right\}\)
Nếu \(xy=1\Rightarrow x=y=1\Rightarrow2+z=z\left(S\right)\)
Nếu \(xy=2\Rightarrow x=1;y=2;z=3\)
Nếu \(x.y=3\Rightarrow x=1;y=3\Rightarrow z=2\) <y (vô lí)
Vậy x;y;z là hoán vị của 1;2;3
vì 32x chia hết cho 4
-40y chia hết cho 4=> 32x-40y chia hết cho 4
mà 38 không chia hết cho 4 => pt không có nghiệm nguyên
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4
a)
xét f(x)=0
=>3x-6=0
=> 3x=6
=> x=2
vậy nghiệm của f(x) là 2
xét g(t)=0
=> -4t-8=0
=> -4t=8
=> t=-2
vậy nghiệm của g(t) là -2
b)
f(x)=1=> 3x-6=1
=> 3x=7
=> x=7/3
g(t)=1=> -4t-8=1
=> -4t=9
=> t=-9/4