K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2020

từ gt \(\Rightarrow p=\frac{b}{4}\sqrt{\frac{2a-b}{2a+b}}\)suy ra b chẵn

Đặt b = 2k thì \(p=\frac{k}{2}\sqrt{\frac{a-k}{a+k}}\Leftrightarrow\frac{4p^2}{k^2}=\frac{a-k}{a+k}\)

đặt \(\frac{2p}{k}=\frac{m}{n}\)với ( m,n ) = 1 và d = ( a-k ; a+k ) \(\Rightarrow\hept{\begin{cases}a-k=dm^2\\a+k=dn^2\end{cases}\Rightarrow2k=d\left(n^2-m^2\right)}\)

và \(4pn=dm\left(n^2-m^2\right)\)

Nếu m,n cùng lẻ thì \(4pn=dm\left(n^2-m^2\right)⋮8\)nên p chẵn tức là p = 2 suy ra ....

Nếu m,n không cùng lẻ thì m chia 4 dư 2 ( do 2p không là số chẵn không chia hết cho 4 và \(\frac{2p}{k}\) là phân số tối giản )

Khi đó n là số lẻ nên n2 - m2 là số lẻ nên không chia hết cho 4 suy ra d là số chia hết cho 2 

đặt d = 2r, ta có 2pn = rm ( n- m) mà ( n- m2 , n ) = 1 \(\Rightarrow r⋮n\)

đặt r = ns ta có : 2p = s ( n - m ) ( n + m ) m . Do n-m,n+m đều lẻ nên n+m=p,n-m = 1

\(\Rightarrow s,m\le2\)và ( m,n ) = ( 1,2 ) và ( 2,3 )

với m = 1, n = 2 thì p = 3 , b = 24 , a = 20

với m = 2 , n = 3 thì p = 5, b = 30, a = 39

Vậy ....

6 tháng 9 2020

Một bài khó hơn nha bạn tham khảo :D vô TKHĐ của tớ

Nguồn bài này là Iran MO 1998 bạn có thể tham khảo lời giải của giáo sư Titu Andresscu tại đây:

23 tháng 7 2017

trả lời nhanh lên

24 tháng 7 2017

2. BÌnh phương lên nhỉ :v

25 tháng 1 2018

ÁP DỤNG BĐT COSI TA CÓ :\(\sqrt{\frac{a}{b+c+2a}}\le\frac{a}{b+c+2a}+\frac{1}{4}\)

                                            \(\sqrt[]{\frac{b}{a+c+2b}}\le\frac{b}{a+c+2b}+\frac{1}{4}\)

                                            \(\sqrt[]{\frac{c}{a+b+2c}}\le\frac{c}{a+b+2c}+\frac{1}{4}\)

ĐẶT A=\(\sqrt[]{\frac{a}{b+c+2a}}+\sqrt[]{\frac{b}{a+c+2b}}+\sqrt[]{\frac{c}{a+b+2c}}\)

            \(\le\frac{a}{b+c+2a}+\frac{b}{a+c+2b}+\frac{c}{a+b+2c}+\frac{3}{4}\)

        ÁP DỤNG BĐT :\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

          \(\Rightarrow\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

          \(\Rightarrow\frac{b}{a+c+2b}\le\frac{1}{4}\left(\frac{b}{a+b}+\frac{b}{b+c}\right)\)

           \(\Rightarrow\frac{c}{a+b+2c}\le\frac{1}{4}\left(\frac{c}{a+c}+\frac{c}{c+b}\right)\)

  \(\Rightarrow A\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}\right)+\frac{3}{4}\)

 \(\Rightarrow A\le\frac{1}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)+\frac{3}{4}\)

\(\Rightarrow A\le\frac{1}{4}\left(1+1+1\right)+\frac{3}{4}\)

\(\Rightarrow A\le\frac{3}{2}\)

DẤU = XẢY RA\(\Leftrightarrow a=b=c\)

30 tháng 8 2020

Một lời giải khác: 

\(\left(\Sigma\sqrt{\frac{a}{b+c+2a}}\right)^2=\left(\Sigma\sqrt{\frac{a\left(a+2c+b\right)}{\left(a+2c+b\right)\left(b+c+2a\right)}}\right)^2\)

\(\le\left[\Sigma a\left(a+2c+b\right)\right]\left[\Sigma\frac{1}{\left(a+2c+b\right)\left(b+c+2a\right)}\right]=\Sigma\frac{a^2+3ab}{\left(a+2c+b\right)\left(b+c+2a\right)}\)

\(=\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\)

Cần chứng minh \(\frac{4\left(\Sigma a^2+3\Sigma ab\right)\left(\Sigma a\right)}{\Pi\left(a+2c+b\right)}\le\frac{9}{4}\)

Chịu khó quy đồng :V

17 tháng 6 2017

\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)

\(=2\left(a+b+c\right)=4\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

10 tháng 10 2019

Áp dụng BĐT Cauchy - Schwarz và BĐT phụ \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)

\(\Rightarrow M^2=\left(\sqrt{\frac{a}{b+c+2a}}+\sqrt{\frac{b}{c+a+2b}}+\sqrt{\frac{c}{a+b+2c}}\right)^2\)

\(\le\left(1+1+1\right)\left(\frac{a}{b+c+2a}+\frac{b}{c+a+2b}+\frac{c}{a+b+2c}\right)\)

\(\le\frac{3}{4}\left(\frac{a}{b+a}+\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{b+a}+\frac{c}{c+a}+\frac{c}{c+b}\right)\)

\(=\frac{3}{4}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{9}{4}\)

\(\Rightarrow M\le\frac{3}{2}\)

Dấu "= " xảy ra \(\Leftrightarrow a=b=c\)

14 tháng 4 2020

ko hỉu